Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
ChemMedChem ; 17(15): e202000499, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35644882

RESUMO

The cation channel of sperm (CatSper) is a validated target for nonhormonal male contraception, but it lacks selective blockers, hindering studies to establish its role in both motility and capacitation. Via an innovative calcium uptake assay utilizing human sperm we discovered novel inhibitors of CatSper function from a high-throughput screening campaign of 72,000 compounds. Preliminary SAR was established for seven hit series. HTS hits or their more potent analogs blocked potassium-induced depolarization and noncompetitively inhibited progesterone-induced CatSper activation. CatSper channel blockade was confirmed by patch clamp electrophysiology and these compounds inhibited progesterone- and prostaglandin E1-induced hyperactivated sperm motility. One of the hit compounds is a potent CatSper inhibitor with high selectivity for CatSper over hCav1.2, hNav1.5, moderate selectivity over hSlo3 and hERG, and low cytotoxicity and is therefore the most promising inhibitor identified in this study. These new CatSper blockers serve as useful starting points for chemical probe development and drug discovery efforts.


Assuntos
Canais de Cálcio , Motilidade dos Espermatozoides , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Masculino , Progesterona/metabolismo , Progesterona/farmacologia , Sêmen/metabolismo , Espermatozoides/metabolismo
4.
Arch Pharm (Weinheim) ; 349(4): 233-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26948688

RESUMO

Two photo-crosslinking biarsenical (CrAsH-EDT2 )-modified probes were synthesized that are expected to be useful tools for tetracysteine-labeled proteins to facilitate the co-affinity purification of their DNA binding sequences and interacting proteins. In addition, improvements for the synthesis of CrAsH-EDT2 and N(1) -(4-azido-2-nitrophenyl)hexane-1,6-diamine are reported. Both photoprobes effectively entered HeLa cells (and the nucleus) and were dependent on the tetracysteine motif in recombinant DMRT1 (doublesex and Mab3-related transcription factor) to induce fluorescence, suggesting that their crosslinking abilities can be exploited for the identification of nucleic acids and proteins associated with a protein of interest.


Assuntos
Arsênio , Arsenicais/química , Azidas/química , Reagentes de Ligações Cruzadas/química , Diaminas/química , Diazometano/análogos & derivados , Diazometano/química , Fluoresceínas/química , Mercaptoetanol/análogos & derivados , Marcadores de Fotoafinidade/química , Arsenicais/síntese química , Azidas/síntese química , Diaminas/síntese química , Diazometano/síntese química , Fluoresceínas/síntese química , Células HeLa , Humanos , Mercaptoetanol/química , Marcadores de Fotoafinidade/síntese química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
5.
J Biomol Screen ; 21(4): 381-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26746582

RESUMO

Transport of ADP and ATP across mitochondria is one of the primary points of regulation to maintain cellular energy homeostasis. This process is mainly mediated by adenine nucleotide translocase (ANT) located on the mitochondrial inner membrane. There are four human ANT isoforms, each having a unique tissue-specific expression pattern and biological function, highlighting their potential as drug targets for diverse clinical indications, including male contraception and cancer. In this study, we present a novel yeast-based high-throughput screening (HTS) strategy to identify compounds inhibiting the function of ANT. Yeast strains generated by deletion of endogenous proteins with ANT activity followed by insertion of individual human ANT isoforms are sensitive to cell-permeable ANT inhibitors, which reduce proliferation. Screening hits identified in the yeast proliferation assay were characterized in ADP/ATP exchange assays employing recombinant ANT isoforms expressed in isolated yeast mitochondria and Lactococcus lactis as well as by oxygen consumption rate in mammalian cells. Using this approach, closantel and CD437 were identified as broad-spectrum ANT inhibitors, whereas leelamine was found to be a modulator of ANT function. This yeast "knock-out/knock-in" screening strategy is applicable to a broad range of essential molecular targets that are required for yeast survival.


Assuntos
Ensaios de Triagem em Larga Escala , Mitocôndrias/efeitos dos fármacos , Translocases Mitocondriais de ADP e ATP/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Abietanos/farmacologia , Trifosfato de Adenosina/agonistas , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Proliferação de Células/efeitos dos fármacos , Humanos , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/agonistas , Translocases Mitocondriais de ADP e ATP/antagonistas & inibidores , Translocases Mitocondriais de ADP e ATP/genética , Organismos Geneticamente Modificados , Retinoides/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Salicilanilidas/farmacologia , Transgenes
6.
PLoS One ; 8(11): e78877, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260132

RESUMO

The lysine acetyltransferase (KAT) Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac) in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we report the development and optimization of a cell-free fluorometric high-throughput screen (HTS) for small-molecule inhibitors of Rtt109-catalyzed histone acetylation. The KAT component of the assay consists of the yeast Rtt109-Vps75 complex, while the histone substrate complex consists of full-length Drosophila histone H3-H4 bound to yeast Asf1. Duplicated assay runs of the LOPAC demonstrated day-to-day and plate-to-plate reproducibility. Approximately 225,000 compounds were assayed in a 384-well plate format with an average Z' factor of 0.71. Based on a 3σ cut-off criterion, 1,587 actives (0.7%) were identified in the primary screen. The assay method is capable of identifying previously reported KAT inhibitors such as garcinol. We also observed several prominent active classes of pan-assay interference compounds such as Mannich bases, catechols and p-hydroxyarylsulfonamides. The majority of the primary active compounds showed assay signal interference, though most assay artifacts can be efficiently removed by a series of straightforward counter-screens and orthogonal assays. Post-HTS triage demonstrated a comparatively small number of confirmed actives with IC50 values in the low micromolar range. This assay, which utilizes five label-free proteins involved in H3K56 acetylation in vivo, can in principle identify compounds that inhibit Rtt109-catalyzed H3K56 acetylation via different mechanisms. Compounds discovered via this assay or adaptations thereof could serve as chemical probes or leads for a new class of antifungals targeting an epigenetic enzyme.


Assuntos
Candida albicans/enzimologia , Proteínas de Drosophila/química , Inibidores Enzimáticos/química , Proteínas Fúngicas , Histona Acetiltransferases , Histonas/química , Animais , Sistema Livre de Células/química , Drosophila , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/química , Humanos
7.
ACS Chem Biol ; 7(3): 506-17, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22181350

RESUMO

APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Desaminase APOBEC-3G , Células Cultivadas , Cristalografia por Raios X , Citidina Desaminase/isolamento & purificação , Citidina Desaminase/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Células HEK293 , Integrase de HIV/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
8.
J Chem Inf Model ; 49(12): 2726-34, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19928768

RESUMO

Anthrax is an infectious disease caused by Bacillus anthracis, a Gram-positive, rod-shaped, anaerobic bacterium. The lethal factor (LF) enzyme is secreted by B. anthracis as part of a tripartite exotoxin and is chiefly responsible for anthrax-related cytotoxicity. As LF can remain in the system long after antibiotics have eradicated B. anthracis from the body, the preferred therapeutic modality would be the administration of antibiotics together with an effective LF inhibitor. Although LF has garnered a great deal of attention as an attractive target for rational drug design, relatively few published inhibitors have demonstrated activity in cell-based assays and, to date, no LF inhibitor is available as a therapeutic or preventive agent. Here we present a novel in silico high-throughput virtual screening protocol that successfully identified 5 non-hydroxamic acid small molecules as new, preliminary LF inhibitor scaffolds with low micromolar inhibition against that target, resulting in a 12.8% experimental hit rate. This protocol screened approximately 35 million nonredundant compounds for potential activity against LF and comprised topomeric searching, docking and scoring, and drug-like filtering. Among these 5 hit compounds, none of which has previously been identified as a LF inhibitor, three exhibited experimental IC(50) values less than 100 microM. These three preliminary hits may potentially serve as scaffolds for lead optimization as well as templates for probe compounds to be used in mechanistic studies. Notably, our docking simulations predicted that these novel hits are likely to engage in critical ligand-receptor interactions with nearby residues in at least two of the three (S1', S1-S2, and S2') subsites in the LF substrate binding area. Further experimental characterization of these compounds is in process. We found that micromolar-level LF inhibition can be attained by compounds with non-hydroxamate zinc-binding groups that exhibit monodentate zinc chelation as long as key hydrophobic interactions with at least two LF subsites are retained.


Assuntos
Antitoxinas/química , Antitoxinas/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Moleculares , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Antitoxinas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/química , Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/química , Metaloproteinases da Matriz/metabolismo , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Interface Usuário-Computador
10.
Curr Drug Targets CNS Neurol Disord ; 1(2): 227-38, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12769629

RESUMO

Schizophrenia is a major health problem that affects 2 million individuals in the United States. Antipsychotics offer considerable symptomatic relief and, although commonly discovered by screening with single biological targets, most interact with multiple receptors and signaling pathways. Considerable evidence from family and twin studies demonstrates genetic components and multiple chromosomal regions associated with schizophrenia. The polygenic nature of schizophrenia and multiple mechanisms for most effective agents indicate the need for broader approaches to target identification. Gene expression profiling of post-mortem human brain tissue simultaneously reveals the expression of many thousands of genes. A comparison of tissue from normals and patients provides a 'disease signature' of aberrantly expressed genes. 'Drug signatures' are the gene expression changes of cultured human or animal neurons treated with psychiatric drugs, and from animals chronically treated with these drugs. A selection of genes from disease and drug signatures can create a set of targets whose changes may better predict disease and its treatment by effective agents. This multi-parameter high throughput screening (MPHTS(SM)) approach evaluates the mRNA expression pattern of cultured cells exposed to candidate compounds. Compounds that normalize genes altered in schizophrenia may better address its underlying causes. Drugs that mimic gene expression changes that are consistently altered by effective antipsychotic agents provide a drug improvement strategy if efficacy is enhanced or side effects are attenuated.


Assuntos
Antipsicóticos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Perfilação da Expressão Gênica/tendências , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/tendências , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA