Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Host Microbe ; 30(5): 696-711.e5, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35550672

RESUMO

Probiotics are increasingly administered to premature infants to prevent necrotizing enterocolitis and neonatal sepsis. However, their effects on gut microbiome assembly and immunity are poorly understood. Using a randomized intervention trial in extremely premature infants, we tested the effects of a probiotic product containing four strains of Bifidobacterium species autochthonous to the infant gut and one Lacticaseibacillus strain on the compositional and functional trajectory of microbiome. Daily administration of the mixture accelerated the transition into a mature, term-like microbiome with higher stability and species interconnectivity. Besides infant age, Bifidobacterium strains and stool metabolites were the best predictors of microbiome maturation, and structural equation modeling confirmed probiotics as a major determinant for the trajectory of microbiome assembly. Bifidobacterium-driven microbiome maturation was also linked to an anti-inflammatory intestinal immune milieu. This demonstrates that Bifidobacterium strains are ecosystem engineers that lead to an acceleration of microbiome maturation and immunological consequences in extremely premature infants.


Assuntos
Microbioma Gastrointestinal , Probióticos , Bifidobacterium , Ecossistema , Humanos , Lactente , Lactente Extremamente Prematuro , Recém-Nascido , Inflamação
2.
FASEB J ; 35(4): e21524, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742690

RESUMO

Maternal pre-pregnancy obesity may have an impact on both maternal and fetal health. We examined the microbiome recovered from placentas in a multi-ethnic maternal pre-pregnant obesity cohort, through an optimized microbiome protocol to enrich low bacterial biomass samples. We found that the microbiomes recovered from the placentas of obese pre-pregnant mothers are less abundant and less diverse when compared to those from mothers of normal pre-pregnancy weight. Microbiome richness also decreases from the maternal side to the fetal side, demonstrating heterogeneity by geolocation within the placenta. In summary, our study shows that the microbiomes recovered from the placentas are associated with pre-pregnancy obesity. IMPORTANCE: Maternal pre-pregnancy obesity may have an impact on both maternal and fetal health. The placenta is an important organ at the interface of the mother and fetus, and supplies nutrients to the fetus. We report that the microbiomes enriched from the placentas of obese pre-pregnant mothers are less abundant and less diverse when compared to those from mothers of normal pre-pregnancy weight. More over, the microbiomes also vary by geolocation within the placenta.


Assuntos
Microbiota/fisiologia , Obesidade Materna/metabolismo , Obesidade/complicações , Placenta/metabolismo , Adulto , Estudos de Coortes , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , Gravidez , Complicações na Gravidez/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA