Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Radiol Prot ; 43(3)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37339608

RESUMO

A monitoring programme, in place since 2006, continues to recover radioactive particles (<2 mm diameter) and larger objects from the beaches of West Cumbria. The potential risks to members of the public using the beaches are mainly related to prolonged skin contact with or the inadvertent ingestion of small particles. Most particles are classified as either 'beta-rich' or 'alpha-rich' and are detected as a result of their caesium-137 or americium-241 content. Beta-rich particles generally also contain strontium-90, with90Sr:137Cs ratios of up to about 1:1, but typically <0.1:1. Alpha-rich particles contain plutonium isotopes, with Pu:241Amαratios usually around 0.5-0.6:1. 'Beta-rich' particles have the greatest potential to cause localised skin damage if held in stationary contact with the skin for prolonged periods. However, it is concluded that only particles of >106Bq of137Cs, with high90Sr:137Cs ratios, would pose a significant risk of causing acute skin ulceration. No particles of this level of activity have been found. Inadvertent ingestion of a particle will result in the absorption to blood of a small proportion of the radionuclide content of the particle. The subsequent retention of radionuclides in body organs and tissues presents a potential risk of the development of cancer. For 'beta-rich' particles with typical activities (mean 2 × 104Bq137Cs, Sr:Cs ratio of 0.1:1), the estimated committed effective doses are about 30µSv for adults and about 40µSv for 1 year old infants, with lower values for 'alpha-rich' particles of typical activities. The corresponding estimates of lifetime cancer incidence following ingestion for both particle types are of the order of 10-6for adults and up to 10-5for infants. These estimates are subject to substantial uncertainties but provide an indication of the low risks to members of the public.


Assuntos
Praias , Exposição Ambiental , Resíduos Radioativos , Poluentes Radioativos do Solo , Humanos , Lactente , Radioisótopos de Césio/efeitos adversos , Radioisótopos de Césio/análise , Plutônio/efeitos adversos , Plutônio/análise , Poluentes Radioativos do Solo/efeitos adversos , Poluentes Radioativos do Solo/análise , Reino Unido , Resíduos Radioativos/efeitos adversos , Resíduos Radioativos/análise , Adulto , Medição de Risco , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Pele/efeitos da radiação , Ingestão de Alimentos , Neoplasias/induzido quimicamente , Partículas beta/efeitos adversos , Partículas alfa/efeitos adversos
2.
PLoS One ; 18(4): e0283877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37099482

RESUMO

Long-duration space exploratory missions to the Earth's moon and the planet Mars are actively being planned. Such missions will require humans to live for prolonged periods beyond low earth orbit where astronauts will be continuously exposed to high energy galactic cosmic rays (GCRs). A major unknown is the potential impact of GCRs on the risks of developing degenerative cardiovascular disease, which is a concern to NASA. A ground-based rat model has been used to provide a detailed characterization of the risk of long-term cardiovascular disease from components of GCRs at radiation doses relevant to future human missions beyond low earth orbit. Six month old male WAG/RijCmcr rats were irradiated at a ground-based charged particle accelerator facility with high energy ion beams broadly representative of GCRs: protons, silicon and iron. Irradiation was given either as a single ion beam or as a combination of three ion beams. For the doses used, the single ion beam studies did not show any significant changes in the known cardiac risk factors and no evidence of cardiovascular disease could be demonstrated. In the three ion beam study, the total cholesterol levels in the circulation increased modestly over the 270 day follow up period, and inflammatory cytokines were also increased, transiently, 30 days after irradiation. Perivascular cardiac collagen content, systolic blood pressure and the number of macrophages found in the kidney and in the heart were each increased 270 days after irradiation with 1.5 Gy of the three ion beam grouping. These findings provide evidence for a cardiac vascular pathology and indicate a possible threshold dose for perivascular cardiac fibrosis and increased systemic systolic blood pressure for complex radiation fields during the 9 month follow up period. The development of perivascular cardiac fibrosis and increased systemic systolic blood pressure occurred at a physical dose of the three ion beam grouping (1.5 Gy) that was much lower than that required to show similar outcomes in earlier studies with the same rat strain exposed to photons. Further studies with longer follow up periods may help determine whether humans exposed to lower, mission-relevant doses of GCRs will develop radiation-induced heart disease.


Assuntos
Doenças Cardiovasculares , Radiação Cósmica , Lesões por Radiação , Voo Espacial , Humanos , Ratos , Masculino , Animais , Lactente , Astronautas , Radiação Cósmica/efeitos adversos , Fibrose
4.
World Neurosurg ; 172: e130-e143, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36587897

RESUMO

OBJECTIVE: To recalculate biological effective dose values (BED) for radio-surgical treatments of acoustic neuroma from a previous study. BEDs values were previously overestimated by only using beam-on times in calculations, so excluding the important beam-off-times (when deoxyribonucleic acid repair continues) which contribute to the overall treatment time. Simple BED estimations using a mono-exponential approximation may not always be appropriate but if used should include overall treatment time. METHODS: Time intervals between isocenters were estimated. These were especially important for the Gamma Knife Model 4C cases since manual changes significantly increase overall treatment times. Individual treatment parameters, such as iso-center number, beam-on-time, and beam-off-time, were then used to calculate BED values using a more appropriate bi-exponential model that includes fast and slow components of DNA damage repair over a wider time range. RESULTS: The revised BED estimates differed significantly from previously published values. The overestimates of BED, obtained using beam-on-time only, varied from 0%-40.3%. BED subclasses, each with a BED range of 5 Gy2.47, indicated that revised values were consistently reduced when compared with originally quoted values, especially for 4C compared with Perfexion cases. Furthermore, subdivision of 4C cases by collimator number further emphasized the impact of scheduled gap times on BED. Further analysis demonstrated important limitations of the mono-exponential model. Target volume was a major confounding factor in the interpretation of the results of this study. CONCLUSIONS: BED values should be estimated by including beam-on and beam-off times. Suggestions are provided for more accurate BED estimations in future studies.


Assuntos
Neuroma Acústico , Radiocirurgia , Humanos , Radiocirurgia/métodos , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Dosagem Radioterapêutica
6.
Int J Radiat Biol ; 98(3): 314-317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34846231

RESUMO

PURPOSE: This article can only skim the surface of an extraordinary career of Dr Alper from the early days in South Africa and throughout her life. CONCLUSIONS: She overcame many obstacles to become widely acknowledged as having had an immense effect on the study of radiation biology. Her very considerable personal scientific achievements in no way prevented her from taking time to help and inspire others in the field as well as maintaining a long and happy family life. If an example is needed to show what can be achieved with a combination of total intellectual integrity and determined application, then Tikvah Alper certainly provided this.


Assuntos
Radiobiologia , Feminino , Humanos
7.
Int J Radiat Biol ; 97(12): 1657-1666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34524068

RESUMO

PURPOSE: A graphical user interface (GUI) was developed to aid in the assessment of changes in the radiation tolerance of spinal cord/similar central nervous system tissues with time between two individual treatment courses. METHODS: The GUI allows any combination of photons, protons (or ions) to be used as the initial, or retreatment, radiotherapy courses. Allowances for clinical circumstances, of reduced tolerance, can also be made. The radiobiological model was published previously and has been incorporated with additional checks and safety features, to be as safe to use as possible. The proton option includes use of a fixed RBE of 1.1 (set as the default), or a variable RBE, the latter depending on the proton linear energy transfer (LET) for organs at risk. This second LET-based approach can also be used for ions, by changing the LET parameters. RESULTS: GUI screenshots are used to show the input and output parameters for different clinical situations used in worked examples. The results from the GUI are in agreement with manual calculations, but the results are now rapidly available without tedious and error-prone manual computations. The software outputs provide a maximum dose limit boundary, which should not be exceeded. Clinicians may also choose to further lower the number of treatment fractions, whilst using the same dose per fraction (or conversely a lower dose per fraction but with the same number of fractions) in order to achieve the intended clinical benefit as safely as possible. CONCLUSIONS: The new GUI will allow scientific-based estimations of time related radiation tolerance changes in the spinal cord and similar central nervous tissues (optic chiasm, brainstem), which can be used to guide the choice of retreatment dose fractionation schedules, with either photons, protons or ions.


Assuntos
Terapia com Prótons , Prótons , Transferência Linear de Energia , Eficiência Biológica Relativa , Retratamento , Medula Espinal
8.
J Radiosurg SBRT ; 7(3): 213-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898085

RESUMO

PURPOSE: Establish the impact of iso-centre sequencing and unscheduled gaps in Gamma Knife® (GK) radiosurgery on the biologically effective dose (BED). METHODS: A BED model was used to study BED values on the prescription iso-surface of patients treated with GK Perfexion™ (Vestibular Schwannoma). The effect of a 15 min gap, simulated at varying points in the treatment delivery, and adjustments to the sequencing of iso-centre delivery, based on average dose-rate, was quantified in terms of the impact on BED. RESULTS: Depending on the position of the gap and the average dose-rate profiles, the mean BED values were decreased by 0.1% to 9.9% of the value in the original plan. A heuristic approach to iso-centre sequencing showed variations in BED of up to 14.2%, relative to the mean BED of the original sequence. CONCLUSION: The treatment variables, like the iso-centre sequence and unscheduled gaps, should be considered during GK radiosurgery treatments.

10.
Int J Radiat Biol ; 96(7): 903-909, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243225

RESUMO

Purpose: To investigate the influence of changes in α/ß ratio (range 1.5-3 Gy) on iso-effective doses, with varying treatment time, in spinal cord and central nervous system tissues with comparable radio-sensitivity. It is important to establish if an α/ß ratio of 2 Gy, the accepted norm for neuro-oncology iso-effect estimations, can be used.Methods: The rat spinal cord irradiation data of Pop et al. provided ED50 values for radiation myelopathy for treatment times that varied from minutes to ∼6 days. Analysis using biphasic repair kinetics, allowing for variable dose-rates, provided the best fit with repair half-times of 0.19 and 2.16 hr, each providing ∼50% of overall repair; with an α/ß ratio 2.47 Gy (CI 1.5-3.95 Gy). Using the above data set, graphical methods were used to investigate changes in the repair parameters for differing fixed α/ß ratios between 1.5 and 3.0 Gy. Two different intermittent dose delivery equations were used to evaluate the implications in a radiosurgery setting.Results: Changes in the α/ß ratio (1.5-3.0 Gy) have a minor effect on equivalent doses for radiation myelopathy for treatment durations of a few hours. Changing the α/ß value from 2 Gy to 2.47 Gy, modified equivalent single doses by < 1% when overall treatment times ranged from 0.1 to 5.0 hr. Significant changes were only found for treatment times longer than 5-10 hr. These two α/ß ratios were also compared in a practical radiosurgery situation, using two different models for estimating BED, again there was no significant loss of accuracy.Conclusions: It is reasonable to use an α/ß ratio of 2 Gy for CNS tissue, with the same repair half-times as published in the original publication by Pop et al., in situations where the assessment of the BED in radiosurgery is used with other form of radiotherapy. In radiosurgery, the variation in BED with treatment duration (for a fixed physical dose) is very similar, but absolute BED values depend on the α/ß value. In radiosurgery, clinical recommendations obtained using BED calculations using the originally proposed α/ß ratio of 2.47 Gy are still appropriate. For calculations involving a combination of radiosurgery and other modalities, such as fractionated radiotherapy, it would be appropriate in all cases to apply a value of 2 Gy, the accepted norm in neuro-oncology, without significant loss of accuracy in the radio-surgical component. This may have important applications in retreatment situations.


Assuntos
Partículas alfa/uso terapêutico , Partículas beta/uso terapêutico , Medula Espinal/efeitos da radiação , Animais , Modelos Biológicos , Tolerância a Radiação , Radiobiologia , Radiocirurgia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA