Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Pharm Sci ; 176: 106256, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820630

RESUMO

In this work we evaluate the study design of LPS challenge experiments used for quantification of drug induced inhibition of TNFα response and provide general guidelines of how to improve the study design. Analysis of model simulated data, using a recently published TNFα turnover model, as well as the optimal design tool PopED have been used to find the optimal values of three key study design variables - time delay between drug and LPS administration, LPS dose, and sampling time points - that in turn could make the resulting TNFα response data more informative. Our findings suggest that the current rule of thumb for choosing the time delay should be reconsidered, and that the placement of the measurements after maximal TNFα response are crucial for the quality of the experiment. Furthermore, a literature study summarizing a wide range of published LPS challenge studies is provided, giving a broader perspective of how LPS challenge studies are usually conducted both in a preclinical and clinical setting.


Assuntos
Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/farmacologia , Projetos de Pesquisa
2.
Pharm Res ; 39(7): 1321-1341, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411506

RESUMO

PURPOSE: More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (Kp,uu,brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, Kp,uu,brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. METHODS: To understand the importance and impact of the Kp,uu,brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. RESULTS AND CONCLUSIONS: From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of Kp,uu,brain as compared to other parameters related to brain exposure. Adoption of the Kp,uu,brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of Kp,uu,brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for Kp,uu,brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.


Assuntos
Barreira Hematoencefálica , Fármacos do Sistema Nervoso Central , Descoberta de Drogas , Encéfalo , Descoberta de Drogas/métodos , Humanos
3.
Eur J Pharm Sci ; 165: 105937, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260892

RESUMO

This study presents a non-linear mixed effects model describing tumour necrosis factor alpha (TNFα) release after lipopolysaccharide (LPS) provocations in absence or presence of anti-inflammatory test compounds. Inter-occasion variability and the pharmacokinetics of two test compounds have been added to this second-generation model, and the goal is to produce a framework of how to model TNFα response in LPS challenge studies in vivo and demonstrate its general applicability regardless of occasion or type of test compound. Model improvements based on experimental data were successfully implemented and provided a robust model for TNFα response after LPS provocation, as well as reliable estimates of the median pharmacodynamic parameters. The two test compounds, Test Compound A and roflumilast, showed 81.1% and 74.9% partial reduction of TNFα response, respectively, and the potency of Test Compound A was estimated to 0.166 µmol/L. Comparing this study with previously published work reveals that our model leads to biologically reasonable output, handles complex data pooled from different studies, and highlights the importance of accurately distinguishing the stimulatory effect of LPS from the inhibitory effect of the test compound.


Assuntos
Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Anti-Inflamatórios/farmacologia , Humanos
4.
J Pharmacokinet Pharmacodyn ; 46(3): 223-240, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30778719

RESUMO

A mechanism-based biomarker model of TNFα-response, including different external provocations of LPS challenge and test compound intervention, was developed. The model contained system properties (such as kt, kout), challenge characteristics (such as ks, kLPS, Km, LPS, Smax, SC50) and test-compound-related parameters (Imax, IC50). The exposure to test compound was modelled by means of first-order input and Michaelis-Menten type of nonlinear elimination. Test compound potency was estimated to 20 nM with a 70% partial reduction in TNFα-response at the highest dose of 30 mg·kg-1. Future selection of drug candidates may focus the estimation on potency and efficacy by applying the selected structure consisting of TNFα system and LPS challenge characteristics. A related aim was to demonstrate how an exploratory (graphical) analysis may guide us to a tentative model structure, which enables us to better understand target biology. The analysis demonstrated how to tackle a biomarker with a baseline below the limit of detection. Repeated LPS-challenges may also reveal how the rate and extent of replenishment of TNFα pools occur. Lack of LPS exposure-time courses was solved by including a biophase model, with the underlying assumption that TNFα-response time courses, as such, contain kinetic information. A transduction type of model with non-linear stimulation of TNFα release was finally selected. Typical features of a challenge experiment were shown by means of model simulations. Experimental shortcomings of present and published designs are identified and discussed. The final model coupled to suggested guidance rules may serve as a general basis for the collection and analysis of pharmacological challenge data of future studies.


Assuntos
Fator de Necrose Tumoral alfa/metabolismo , Animais , Biomarcadores/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley
5.
Mol Pharm ; 14(12): 4362-4373, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29099189

RESUMO

Drug induced phospholipidosis (PLD) may be observed in the preclinical phase of drug development and pose strategic questions. As lysosomes have a central role in pathogenesis of PLD, assessment of lysosomal concentrations is important for understanding the pharmacokinetic basis of PLD manifestation and forecast of potential clinical appearance. Herein we present a systematic approach to provide insight into tissue-specific PLD by evaluation of unbound intracellular and lysosomal (reflecting acidic organelles) concentrations of two structurally related diprotic amines, GRT1 and GRT2. Their intratissue distribution was assessed using brain and lung slice assays. GRT1 induced PLD both in vitro and in vivo. GRT1 showed a high intracellular accumulation that was more pronounced in the lung, but did not cause cerebral PLD due to its effective efflux at the blood-brain barrier. Compared to GRT1, GRT2 revealed higher interstitial fluid concentrations in lung and brain, but more than 30-fold lower lysosomal trapping capacity. No signs of PLD were seen with GRT2. The different profile of GRT2 relative to GRT1 is due to a structural change resulting in a reduced basicity of one amino group. Hence, by distinct chemical modifications, undesired lysosomal trapping can be separated from desired drug delivery into different organs. In summary, assessment of intracellular unbound concentrations was instrumental in delineating the intercompound and intertissue differences in PLD induction in vivo and could be applied for identification of potential lysosomotropic compounds in drug development.


Assuntos
Diaminas/farmacologia , Lipidoses/induzido quimicamente , Modelos Biológicos , Animais , Encéfalo/metabolismo , Química Farmacêutica , Líquido Extracelular/metabolismo , Feminino , Células Hep G2 , Humanos , Pulmão/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Modelos Animais , Modelos Químicos , Fosfolipídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Distribuição Tecidual
6.
J Pharm Sci ; 103(5): 1504-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24648352

RESUMO

Common strategies to optimize prodrugs use either in vitro or rodent in vivo approaches, which do not consider elimination pathways that do not result in the generation of the desired product or might be misleading because of species differences, respectively. As a step forward, we have incorporated a novel application of hepatocytes into our prodrug optimization strategy to increase the bioavailability of a poorly soluble drug candidate by attaching a charged ester linker. The model involves the incubation of hepatocytes from multiple species in serum-containing medium to mimic formation as well as simultaneous metabolism of both prodrug and active drug. Using this strategy, a correlation between the in vitro AUC and the AUC after intravenous administration was obtained for active drug formation in several species. Moreover, hepatocytes correctly predicted the likelihood of undesired exposure with nonhydrolyzed prodrug. This novel approach enabled us to identify several prodrugs, which showed improved exposure over a wide dose range. Furthermore, a strategy was developed resulting in a decision tree that can be used to determine the applicability of the hepatocyte model in the screening process.


Assuntos
Hepatócitos/metabolismo , Pró-Fármacos/administração & dosagem , Pró-Fármacos/metabolismo , Soro/metabolismo , Animais , Área Sob a Curva , Disponibilidade Biológica , Cães , Ésteres/química , Feminino , Humanos , Cinética , Macaca fascicularis , Masculino , Camundongos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Pró-Fármacos/química , Ratos , Ratos Wistar , Solubilidade
7.
Bioorg Med Chem Lett ; 22(13): 4396-403, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22632933

RESUMO

Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe the identification of novel small molecular weight inhibitors of Hsp90 using a fragment based approach. Fragments were selected by docking, tested in a biochemical assay and the confirmed hits were crystallized. Information gained from X-ray structures of these fragments and other chemotypes was used to drive the fragment evolution process. Optimization of these high µM binders resulted in 3-benzylindazole derivatives with significantly improved affinity and anti-proliferative effects in different human cancer cell lines.


Assuntos
Amidas/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Indazóis/química , Bibliotecas de Moléculas Pequenas/química , Amidas/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/toxicidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA