Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(39): 19449-19457, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31484780

RESUMO

Computational and biochemical studies implicate the blue-light sensor cryptochrome (CRY) as an endogenous light-dependent magnetosensor enabling migratory birds to navigate using the Earth's magnetic field. Validation of such a mechanism has been hampered by the absence of structures of vertebrate CRYs that have functional photochemistry. Here we present crystal structures of Columba livia (pigeon) CRY4 that reveal evolutionarily conserved modifications to a sequence of Trp residues (Trp-triad) required for CRY photoreduction. In ClCRY4, the Trp-triad chain is extended to include a fourth Trp (W369) and a Tyr (Y319) residue at the protein surface that imparts an unusually high quantum yield of photoreduction. These results are consistent with observations of night migratory behavior in animals at low light levels and could have implications for photochemical pathways allowing magnetosensing.


Assuntos
Columbidae/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Sequência de Aminoácidos , Migração Animal/fisiologia , Animais , Luz , Campos Magnéticos , Fotoquímica/métodos , Relação Estrutura-Atividade , Vertebrados/metabolismo
2.
Biochemistry ; 44(6): 2119-28, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15697238

RESUMO

The spin-correlated radical pair [P(700)(+)A(1)(-)] gives rise to a characteristic "out-of-phase" electron spin-echo signal. The electron spin-echo envelope modulation (ESEEM) of these signals has been studied in thylakoids prepared from the wild-type strain of Chlamydomonas reinhardtii and in two site-directed mutants, in which the methionine residue which acts as the axial ligand to the chlorin electron acceptor A(0) has been substituted with a histidine either on the PsaA (PsaA-M684H) or the PsaB (PsaB-M664H) reaction center subunits. The analysis of the time domain ESEEM provides information about the spin-spin interaction in the [P(700)(+)A(1)(-)] radical pair, and the values of the dipolar (D) and the exchange (J) interaction can be extracted. From the distance dependence of the dipolar coupling term, the distance between the unpaired electron spin density clouds of the primary donor P(700)(+) and the phyllosemiquinone A(1)(-) can be determined. The [P(700)(+)A(1)(-)] ESEEM spectrum obtained in wild-type thylakoids can be reconstructed using a linear combination of the spectra measured in the PsaA and PsaB A(0) mutants, demonstrating that electron transfer resulting in charge separation is occurring on both the PsaA and PsaB branches. The [P(700)(+)A(1B)(-)] distance in the point dipole approximation in the PsaA-M684H mutant is 24.27 +/- 0.02 A, and the [P(700)(+)A(1A)(-)] distance in the PsaB-M664H mutant is 25.43 +/- 0.01 A. An intermediate value of 25.01 +/- 0.02 A is obtained in the wild-type membranes which exhibit both spin-polarized pairs.


Assuntos
Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema I/química , Proteínas de Plantas/química , Marcadores de Spin , Tirosina/análogos & derivados , Animais , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clorofila/genética , Clorofila/metabolismo , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transporte de Elétrons , Radicais Livres/química , Radicais Livres/metabolismo , Histidina/genética , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Metionina/genética , Mutagênese Sítio-Dirigida , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Porfirinas/química , Porfirinas/genética , Porfirinas/metabolismo , Tilacoides/química , Tilacoides/metabolismo , Tirosina/química , Tirosina/metabolismo
3.
Methods ; 34(1): 75-87, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15283917

RESUMO

Chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance phenomenon that can be used to probe the solvent-accessibility of tryptophan, tyrosine, and histidine residues in proteins by means of laser-induced photochemical reactions, resulting in significant enhancement of NMR signals. CIDNP offers good sensitivity as a surface probe of protein structure and is particularly powerful in time-resolved NMR measurements. Real-time, rapid-injection protein refolding experiments permit the observation of changes in the accessibility of specific residues during the folding process. CIDNP pulse-labeling gives information on the accessibility of residues in partially structured proteins (e.g., molten globule states) whose NMR spectra are broad and poorly resolved. Heteronuclear two-dimensional (15)N-(1)H CIDNP techniques allow identification of surface-accessible residues with improved resolution and sensitivity. These methods offer residue-specific structural and kinetic information on transient folding intermediates and other partially folded states of proteins that are not readily available from more routine NMR techniques.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Dobramento de Proteína , Histidina/química , Espectroscopia de Ressonância Magnética/instrumentação , Soluções/química , Triptofano/química , Tirosina/química
4.
J Biol Chem ; 279(16): 16697-705, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-14749333

RESUMO

Oxidative folding is the fusion of native disulfide bond formation with conformational folding. This complex process is guided by two types of interactions: first, covalent interactions between cysteine residues, which transform into native disulfide bridges, and second, non-covalent interactions giving rise to secondary and tertiary protein structure. The aim of this work is to understand both types of interactions in the oxidative folding of Amaranthus alpha-amylase inhibitor (AAI) by providing information both at the level of individual disulfide species and at the level of amino acid residue conformation. The cystine-knot disulfides of AAI protein are stabilized in an interdependent manner, and the oxidative folding is characterized by a high heterogeneity of one-, two-, and three-disulfide intermediates. The formation of the most abundant species, the main folding intermediate, is favored over other species even in the absence of non-covalent sequential preferences. Time-resolved NMR and photochemically induced dynamic nuclear polarization spectroscopies were used to follow the oxidative folding at the level of amino acid residue conformation. Because this is the first time that a complete oxidative folding process has been monitored with these two techniques, their results were compared with those obtained at the level of an individual disulfide species. The techniques proved to be valuable for the study of conformational developments and aromatic accessibility changes along oxidative folding pathways. A detailed picture of the oxidative folding of AAI provides a model study that combines different biochemical and biophysical techniques for a fuller understanding of a complex process.


Assuntos
Proteínas de Plantas/química , Amaranthus/química , Amaranthus/metabolismo , Sequência de Aminoácidos , Cinética , Dados de Sequência Molecular , Oxirredução , Dobramento de Proteína , Inibidores da Tripsina , alfa-Amilases/antagonistas & inibidores
5.
J Mol Biol ; 330(2): 397-407, 2003 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12823977

RESUMO

We report the combined use of real-time photo-CIDNP NMR and stopped-flow fluorescence techniques to study the kinetic refolding of a set of mutants of a small globular protein, HPr, in which each of the four phenylalanine residues has in turn been replaced by a tryptophan residue. The results indicate that after refolding is initiated, the protein collapses around at least three, and possibly all four, of the side-chains of these residues, as (i) the observation of transient histidine photo-CIDNP signals during refolding of three of the mutants (F2W, F29W, and F48W) indicates a strong decrease in tryptophan accessibility to the flavin dye; (ii) iodide quenching experiments show that the quenching of the fluorescence of F48W is less efficient for the species formed during the dead-time of the stopped-flow experiment than for the fully native state; and (iii) kinetic fluorescence anisotropy measurements show that the tryptophan side-chain of F48W has lower mobility in the dead-time intermediate state than in both the fully denatured and fully native states. The hydrophobic collapse observed for HPr during the early stages of its folding appears to act primarily to bury hydrophobic residues. This process may be important in preventing the protein from aggregating prior to the acquisition of native-like structure in which hydrophobic residues are exposed in order to play their role in the function of the protein. The phenylalanine residue at position 48 is likely to be of particular interest in this regard as it is involved in the binding to enzymes I and II that mediates the transfer of a phosphoryl group between the two enzymes.


Assuntos
Proteínas de Bactérias , Polarização de Fluorescência/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fotoquímica , Desnaturação Proteica , Dobramento de Proteína , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA