Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 674: 560-575, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38945024

RESUMO

The present paper reports the fabrication of novel types of hybrid fibrous photocatalysts by combining block copolymer (BCP) templating, sol-gel processing, and coaxial electrospinning techniques. Coaxial electrospinning produces core-shell nanofibers (NFs), which are converted into hollow porous TiO2 NFs using an oxidative calcination step. Hybrid BCP micelles comprising a single plasmonic nanoparticle (NP) in their core and thereof derived silica-coated core-shell particles are utilized as precursors to generate yolk-shell type particulate inclusions in photocatalytically active NFs. The catalytic and photocatalytic activity of calcined NFs comprising different types of yolk-shell particles is systematically investigated and compared. Interestingly, calcined NFs comprising silica-coated yolk-shells demonstrate enhanced catalytic and photocatalytic performance despite the presence of silica shell separating plasmonic NP from the TiO2 matrix. Electromagnetic simulations indicate that this enhancement is caused by a localized surface plasmon resonance and a confinement effect in silica-coated yolk-shells embedded in porous TiO2 NFs. Utilization of the coaxially electrospun TiO2 NFs in combination with yolk-shells comprising plasmonic NPs reveals to be a potent method for the photocatalytic decomposition of numerous pollutants. It is worth noting that this study stands as the first occurrence of combining yolk-shells (Au@void@SiO2) with porous electrospun NFs (TiO2) for photocatalytic purposes and gaining an understanding of plasmon and confinement effects for photocatalytic performance. This approach represents a promising route for fabricating highly active and up-scalable fibrous photocatalytic systems.

2.
Langmuir ; 39(17): 6231-6239, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37074843

RESUMO

In the present work, we report the fabrication and characterization of well-defined core-satellite nanostructures. These nanostructures comprise block copolymer (BCP) micelles, containing a single gold nanoparticle (AuNP) in the core and multiple photoluminescent cadmium selenide (CdSe) quantum dots (QDs) attached to the micelle's coronal chains. The asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) BCP was employed to develop these core-satellite nanostructures in a series of P4VP-selective alcoholic solvents. The BCP micelles were first prepared in 1-propanol and subsequently mixed with AuNPs, followed by gradual addition of CdSe QDs. This method resulted in the development of spherical micelles that contained a PS/Au core and a P4VP/CdSe shell. These core-satellite nanostructures, developed in different alcoholic solvents, were further employed for the time-resolved photoluminescence analysis. It was found that solvent-selective swelling of the core-satellite nanostructures tunes the distance between the QDs and AuNPs and modulates their Förster resonance energy transfer (FRET) behavior. The average lifetime of the donor emission varied from 12.3 to 10.3 nanoseconds (ns) with the change in the P4VP-selective solvent within the core-satellite nanostructures. Furthermore, the distances between the donor and acceptor were also calculated using efficiency measurements and corresponding Förster distances. The resulting core-satellite nanostructures hold promising potential in various fields, such as photonics, optoelectronics, and sensors that utilize the FRET process.

3.
Membranes (Basel) ; 11(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925335

RESUMO

Fabrication of block copolymer (BCP) template-assisted nano-catalysts has been a subject of immense interest in the field of catalysis and polymer chemistry for more than two decades now. Different methods, such as colloidal route, on-substrate methods, bulk self-assembly approaches, combined approaches, and many others have been used to prepare such nano-catalysts. The present review focuses on the advances made in this direction using diblock, triblock, and other types of BCP self-assembled structures. It will be shown how interestingly, researchers have exploited the features of tunable periodicity, domain orientation, and degree of lateral orders of self-assembled BCPs by using fundamental approaches, as well as using different combinations of simple methods to fabricate efficient catalysts. These approaches allow for fabricating catalysts that are used for the growth of single- and multi-walled carbon nanotubes (CNTs) on the substrate, size-dependent electrooxidation of the carbon mono oxide, cracking of 1,3,5-triisopropylbenzene (TIPB), methanol oxidation, formic acid oxidation, and for catalytic degradation of dyes and water pollutants, etc. The focus will also be on how efficient and ease-of-use catalysts can be fabricated using different BCP templates, and how these have contributed to the fabrication of different nano-catalysts, such as nanoparticle array catalysts, strawberry and Janus-like nanoparticles catalysts, mesoporous nanoparticles and film catalysts, gyroid-based bicontinuous catalysts, and hollow fiber membrane catalysts.

4.
J Colloid Interface Sci ; 578: 441-451, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535426

RESUMO

We investigate the self-assembly of cylinder-forming polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers (BCP) mixed with metal nanoparticles (NP) coated with short-chain polystyrene (PS) ligands. The NP formed hierarchical superstructures under confinement of cylindrical PS domains of PS-b-P4VP BCP. The complexity of NP superstructures was found to depend on the ratio between PS cylindrical domain size and NP size (DC/DNP). As the DC/DNP ratio increased, the number of NP layers normal to the cylinder axis also increased. However, the packing density of the NP decreased at higher DC/DNP. Furthermore, the morphology of the structures obtained during different solvent casting conditions revealed that the initial clustering of NP and micellization around these clusters act as a precursor for the subsequent formation of closely packed structures of NP in cylinders. The experimental results were further supported by modeling results obtained from molecular dynamics (MD) simulation. Based on MD simulations, we constructed structural phase diagram of nanoparticle assemblies in the presence of asymmetric diblock copolymers comprising short NP-attractive blocks. The MD simulation results indicate that NP undergo transition from spherical to cylindrical assemblies depending on the NP size, the overall concentration of components and the degree of affinity of the minor block to NP.

5.
RSC Adv ; 10(11): 6592-6602, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35495995

RESUMO

Catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles were fabricated using a combination of sol-gel chemistry and coaxial electrospinning technique. We report the fabrication of catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles (AuNPs) using a combination of sol-gel chemistry and coaxial electrospinning technique. The coaxial electrospinning involved the use of a mixture of poly(vinyl pyrrolidone) (PVP) and titania sol as the shell forming component, whereas a mixture of poly(4-vinyl pyridine) (P4VP) and pre-synthesized AuNPs constituted the core forming component. The core-shell nanofibers were calcined stepwise up to 600 °C which resulted in decomposition and removal of the organic constituents of the nanofibers. This led to the formation of porous and hollow titania nanofibers, where the catalytic AuNPs were embedded in the inner wall of the titania shell. The catalytic activity of the prepared Au@TiO2 porous nanofibers was investigated using a model reaction of catalytic reduction of 4-nitrophenol and Congo red dye in the presence of NaBH4. The Au@TiO2 porous and hollow nanofibers exhibited excellent catalytic activity and recyclability, and the morphology of the nanofibers remained intact after repeated usage. The presented approach could be a promising route for immobilizing various nanosized catalysts in hollow titania supports for the design of stable catalytic systems where the added photocatalytic activity of titania could further be of significance.

6.
Polymers (Basel) ; 11(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739558

RESUMO

We investigated the micellar behavior of a series of asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers in different P4VP-selective alcoholic solvents. The micellar behavior was further correlated with the spectroscopic ellipsometry results obtained on swelling of PS and P4VP polymer films in the corresponding solvent vapors. The time-resolved (in situ) dynamic light scattering (DLS) measurements, in combination with (ex situ) electron microscopy imaging, revealed information about the aggregation state of PS-b-P4VP BCP in different alcohols and the effect of heat treatment. The ellipsometry measurements allowed us to estimate the difference in solvent selectivity toward PS/P4VP pair. Both DLS and ellipsometric studies suggested that less polar alcohols (i.e., 1-propanol, 1-butanol, and 1-pentanol) are likely to be close to each other in terms of their selectivity toward PS/P4VP pair, whereas more polar ethanol and methanol show the highest and the lowest affinity toward P4VP, respectively.

7.
Phys Chem Chem Phys ; 19(40): 27651-27663, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28983538

RESUMO

We investigate the self-assembly of a cylinder-forming polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) mixed with trioctylphosphine oxide (TOPO) capped cadmium selenide (CdSe) quantum dots (QDs). The QDs were found to be enthalpically compatible with the P4VP chains via ligand displacement of TOPO from the QD surface. However, the QDs were found to localize preferentially at the PS/P4VP interphase plausibly to gain translational entropy in order to further lower the energetics of the self-assembled structure. Interestingly, the morphological transformation observed with increasing weight fraction of the QDs in the BCP/QD composite was driven by the migration of the displaced TOPO from the QD surface to the PS phase, effectively increasing its total volume fraction. Hence, the PS-b-P4VP BCP with PS as the minority block displayed lamellar morphology in its composite with QDs. Furthermore, the preferred localization of the QDs at the PS/P4VP interface led to the formation of a trilayer lamellar morphology which was deduced from the suppression of the primary scattering peak, relative to higher order peaks in the SAXS data. The morphological transformation was accompanied by a significant increase in the domain spacing due to excessive stretching of the longer P4VP chains of the asymmetric block copolymer. However, in the PS-b-P4VP/CdSe composites with P4VP as the minority block, cylindrical morphology was retained and the domain spacing decreased due to dominance of the co-surfactant effect as well as interfacial localization of CdSe QDs. We also demonstrate that these PS-b-P4VP/CdSe self-assembled hybrid materials could further be used to obtain isolated core-shell nanoobjects, such as nanofibers and nanosheets, containing CdSe QDs. The nanoobjects so obtained exhibited photoluminescence properties typical of CdSe quantum dots. These photoluminescent polymer nanoobjects could have potential applications in biological targeting and fluorescence labeling.

8.
J Colloid Interface Sci ; 491: 246-254, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039806

RESUMO

Catalytically active Au@hollow-SiO2 particles embedded in porous silica support (Au@hollow-SiO2@PSS) were prepared by using spherical micelles from poly(styrene)-block-poly(4-vinyl pyridine) block copolymer as a sacrificial template. Drastic increase of the shell porosity was observed after pyrolytic removal of polymeric template because the stretched poly(4-vinyl pyridine) chains interpenetrating with silica shell acted as an effective porogen. The embedding of Au@hollow-SiO2 particles in porous silica support prevented their fusion during pyrolysis. The catalytic activity of Au@hollow-SiO2@PSS was investigated using a model reaction of catalytic reduction of 4-nitrophenol and reductive degradation of Congo red azo-dye. Significantly, to the best of our knowledge, Au@hollow-SiO2@PSS catalyst shows the highest activity among analogous systems reported till now in literature. Such high activity was attributed to the presence of multiple pores within silica shell of Au@hollow-SiO2 particles and easy accessibility of reagents to the catalytically active sites of the ligand-free gold surface through the porous silica support.

9.
ACS Appl Mater Interfaces ; 7(23): 12559-69, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25619225

RESUMO

In this review, recent developments in the fabrication of hexagonal and parallel ordered arrays of metallic nanodomains on a substrate are described. We focus on the nanopatterning approach by means of switchable block copolymer thin films. This approach is highly advantageous, because it can lead to extremely regular patterns with metal subunits of only a few nanometers in diameter and center-to-center distances of tens of nanometers. Hence, the resulting 1D or 2D periodic arrays of metal nanodots and nanowires on silicon substrates can be fabricated with extremely high unit densities and on very large areas. The templated deposition of presynthesized metal nanoparticles on functional block copolymers is described in detail. Current challenges are discussed and an outlook for further developments is given.

10.
ACS Appl Mater Interfaces ; 7(23): 12539-58, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25603397

RESUMO

Fabrication of core-shell polymer nano-objects with well-defined shape and hairy shell has been a subject of immense interest in polymer chemistry for more than two decades now. Different approaches such as those involving synthesis (grafting approaches) and block copolymer self-assembly (solution as well as bulk) have been used for the preparation of such nano-objects. Of these approaches that involving bulk self-assembled structures of block copolymers have been of special interest because of the simplicity and range of shape and structures possible. The present review focuses on the advances which have been made in this direction using diblock and triblock self-assembled structures. It will be shown that this approach allows to fabricate hairy nano-objects of not only simple shapes such as spheres, rods, and sheets but also those with more complex shape and morphology such as multicompartment micelles, which are not possible to obtain with synthetic or solution self-assembly approaches. Furthermore, interesting structures such as Janus nano-objects could also be fabricated using this approach. The review further highlights the use of such nano-objects for templating applications.

11.
Angew Chem Int Ed Engl ; 53(34): 9090-3, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24989683

RESUMO

Theoretical models predict that a variety of self-assembled structures of closely packed spherical particles may result when they are confined in a cylindrical domain. In the present work we demonstrate for the first time that the polymer-coated nanoparticles confined in the self-assembled cylindrical domains of a block copolymer pack in helical morphology, where we can isolate individual fibers filled with helically arranged nanoparticles. This finding provides unique possibilities for fundamental as well as application-oriented research in similar directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA