Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cereb Cortex ; 33(5): 2101-2142, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35667019

RESUMO

Diverse neocortical GABAergic neurons specialize in synaptic targeting and their effects are modulated by presynaptic metabotropic glutamate receptors (mGluRs) suppressing neurotransmitter release in rodents, but their effects in human neocortex are unknown. We tested whether activation of group III mGluRs by L-AP4 changes GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in 2 distinct dendritic spine-innervating GABAergic interneurons recorded in vitro in human neocortex. Calbindin-positive double bouquet cells (DBCs) had columnar "horsetail" axons descending through layers II-V innervating dendritic spines (48%) and shafts, but not somata of pyramidal and nonpyramidal neurons. Parvalbumin-expressing dendrite-targeting cell (PV-DTC) axons extended in all directions innervating dendritic spines (22%), shafts (65%), and somata (13%). As measured, 20% of GABAergic neuropil synapses innervate spines, hence DBCs, but not PV-DTCs, preferentially select spine targets. Group III mGluR activation paradoxically increased the frequency of sIPSCs in DBCs (to median 137% of baseline) but suppressed it in PV-DTCs (median 92%), leaving the amplitude unchanged. The facilitation of sIPSCs in DBCs may result from their unique GABAergic input being disinhibited via network effect. We conclude that dendritic spines receive specialized, diverse GABAergic inputs, and group III mGluRs differentially regulate GABAergic synaptic transmission to distinct GABAergic cell types in human cortex.


Assuntos
Neocórtex , Receptores de Glutamato Metabotrópico , Humanos , Neocórtex/metabolismo , Parvalbuminas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Interneurônios/fisiologia , Transmissão Sináptica/fisiologia , Neurônios GABAérgicos/metabolismo , Dendritos/metabolismo
2.
J Comp Neurol ; 531(4): 528-547, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36519231

RESUMO

Olfactory glomeruli are the sites of initial synaptic integration in olfactory information processing. They are surrounded by juxtaglomerular (JG) cells, which include periglomerular, superficial short axon, and external tufted cells. A subpopulation of JG cells expresses the dopamine synthetic enzymes, tyrosine hydroxylase (TH), and aromatic l-amino acid decarboxylase (AADC). TH cells corelease γ-aminobutyric acid (GABA) and their processes extend to multiple glomeruli forming intra- and interglomerular circuits. It is well established that 17ß-estradiol (E2) exerts wide ranging effects in the central nervous system. However, participation of E2 in the modulation of neurotransmission and synaptic plasticity of TH cells in olfactory glomeruli is unknown. To address this, we subcutaneously implanted a 60-day release pellet of E2 or placebo into intact male mice and compared glomerular TH, AADC, and vesicular γ-aminobutyric acid transporter (VGAT) immunoreactivity between them. High-voltage electron microscopy (HVEM) and ultra-HVEM using immunogold revealed significantly increased immunoreactive intensity at the cellular level for TH and AADC after E2 treatment and for VGAT in TH cells. These results indicate that E2 may affect the interplay between dopaminergic and GABAergic systems. Moreover, random-section electron microscopy analysis showed a significant increase in the number of symmetrical synapses from TH cell to mitral/tufted cell dendrites after E2 treatment. This result was supported by quantitative immunofluorescence staining with synapse markers. Together, these data indicate that E2 may regulate inhibition between TH cells and olfactory bulb neurons within the glomerulus via interaction between dopaminergic and GABAergic systems, thereby contributing to neuromodulation of odor information processing.


Assuntos
Neurônios Dopaminérgicos , Estradiol , Bulbo Olfatório , Animais , Masculino , Camundongos , Aminoácidos , Dopamina , Estradiol/farmacologia , Ácido gama-Aminobutírico , Bulbo Olfatório/metabolismo , Sinapses/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo
3.
J Comp Neurol ; 529(9): 2189-2208, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33616936

RESUMO

Olfactory input is processed in the glomerulus of the main olfactory bulb (OB) and relayed to higher centers in the brain by projection neurons. Conversely, centrifugal inputs from other brain regions project to the OB. We have previously analyzed centrifugal inputs into the OB from several brain regions using single-neuron labeling. In this study, we analyzed the centrifugal noradrenergic (NA) fibers derived from the locus coeruleus (LC), because their projection pathways and synaptic connections in the OB have not been clarified in detail. We analyzed the NA centrifugal projections by single-neuron labeling and immunoelectron microscopy. Individual NA neurons labeled by viral infection were three-dimensionally traced using Neurolucida software to visualize the projection pathway from the LC to the OB. Also, centrifugal NA fibers were visualized using an antibody for noradrenaline transporter (NET). NET immunoreactive (-ir) fibers contained many varicosities and synaptic vesicles. Furthermore, electron tomography demonstrated that NET-ir fibers formed asymmetrical synapses of varied morphology. Although these synapses were present at varicosities, the density of synapses was relatively low throughout the OB. The maximal density of synapses was found in the external plexiform layer; about 17% of all observed varicosities contained synapses. These results strongly suggest that NA-containing fibers in the OB release NA from both varicosities and synapses to influence the activities of OB neurons. The present study provides a morphological basis for olfactory modulation by centrifugal NA fibers derived from the LC.


Assuntos
Neurônios Adrenérgicos/ultraestrutura , Rede Nervosa/ultraestrutura , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/ultraestrutura , Bulbo Olfatório/ultraestrutura , Condutos Olfatórios/ultraestrutura , Neurônios Adrenérgicos/química , Neurônios Adrenérgicos/metabolismo , Animais , Locus Cerúleo/química , Locus Cerúleo/metabolismo , Locus Cerúleo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/metabolismo , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/análise , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Condutos Olfatórios/química , Condutos Olfatórios/metabolismo
4.
Anat Sci Int ; 95(3): 420-424, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31925729

RESUMO

The superior vena cava is formed during the fetal period by the development of anastomoses between the right and left anterior cardinal veins, and the regression of the central part of the left anterior cardinal vein. The persistence of this part of the left anterior cardinal vein causes the formation of a left superior vena cava, which is a rare anomaly in cadaver dissection. We report the case of a persistent left superior vena cava with a normal right superior vena cava in a 95-year-old male cadaver, which was discovered during anatomical dissection for medical students at Kawasaki Medical School in 2016. The left superior vena cava was formed by the confluence of the left internal jugular and left subclavian veins and terminated in the right atrium via what would normally be the coronary sinus. The right and left superior venae cavae received intercostal veins via a right and left azygos vein, respectively. However, the right azygos vein was shorter than the normal azygos vein and received only the second to fifth intercostal veins, whereas the left azygos vein received the fifth to eleventh left intercostal veins and the sixth to eleventh right intercostal veins. We consider that the anomalies of the azygos venous system were the result of regression of right supracardinal vein and the persistence of the left supracardinal vein during development. An awareness of such variations of major thoracic veins is important for the interpretation of unusual CT images.


Assuntos
Anormalidades Múltiplas , Veia Ázigos/anormalidades , Seio Coronário/anormalidades , Veia Cava Superior/anormalidades , Idoso de 80 Anos ou mais , Veia Ázigos/patologia , Seio Coronário/patologia , Humanos , Masculino , Veia Cava Superior/patologia
5.
Biosci Rep ; 38(2)2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29535277

RESUMO

Many inflammatory cells are known to be home to inflamed temporomandibular joint (TMJ) tissues by stimulation with cytokines and chemokines produced by inflammatory lesions in the TMJ. However, how the inflammatory cells affect the progression of inflammation in TMJ synovial tissues after their homing to inflamed TMJ site is still uncertain. Here, we isolated and cultured TMJ synoviocyte-like cells (TMJSCs) from murine TMJ tissues. We demonstrated that interleukin 1ß (IL-1ß) up-regulated expression of monocyte chemoattractant protein 1 (MCP-1) in TMJSCs. In addition, we found that IL-1ß-treated TMJSCs strongly promoted migratory activity of mouse monocyte/macrophage RAW264.7 cells through secretion of MCP-1. On the other hand, IL-1ß up-regulated expression levels of intracellular adhesion molecule 1 (ICAM-1), a leukocyte adhesion ligand in TMJSCs. In addition, IL-1ß promoted cell-cell adhesion between TMJSCs and RAW264.7 cells. Intriguingly, we also found that cell-cell interactions mediated through soluble factors other than IL-1ß and cell-cell adhesion molecules between IL-1ß-stimulated TMJSCs and RAW264.7 cells synergistically augmented secretion of MCP-1 from these cells. Therefore, these results suggested that the IL-1ß-induced recruitment of monocyte/macrophage lineage cells to inflamed synovial membranes in TMJ was further augmented by the cell-cell interaction-induced secretion of MCP-1 from the inflammation site, possibly resulting in prolonged inflammatory responses in TMJ synovial tissue.


Assuntos
Comunicação Celular/imunologia , Quimiocina CCL2/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Sinoviócitos/imunologia , Articulação Temporomandibular/imunologia , Animais , Inflamação/imunologia , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Células RAW 264.7 , Sinoviócitos/patologia , Articulação Temporomandibular/patologia
6.
Anat Rec (Hoboken) ; 300(2): 402-414, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27737514

RESUMO

Although several lines of evidence have suggested that sex steroids influence olfaction, little is known about the cellular basis of steroid-metabolizing enzymes in the olfactory system. Thus, we aimed to examine gene expression and immunolocalization of four sex steroid-metabolizing enzymes in the olfactory mucosa (OM) of albino rats; steroid side chain-cleaving enzyme (P450scc), 17ß-hydroxysteroid dehydrogenase type 1 (17ß-HSD-1), 17ß-HSD type 2 (17ß-HSD-2), and aromatase. P450scc is known to catalyze conversion from cholesterol to pregnenolone. 17ß-HSD-1 catalyzes conversion from estrone to estradiol, and 17ß-HSD-2 does the reverse. Aromatase catalyzes the conversion from testosterone to estradiol-17ß. Messenger (m) RNAs of all four enzymes mentioned above were detected in the OM. Western blot analysis demonstrated that P450scc, 17ß-HSD-1, and 17ß-HSD-2 were detected in the OM. Immunoreactivity for these three enzymes was observed in sustentacular cells of the olfactory epithelium and acinar cells of Bowman's glands. Immunoelectron microscopy analysis demonstrated immunoreactivity for P450scc in mitochondria, and for 17ß-HSD-1 and 17ß-HSD-2 in the well-developed smooth endoplasmic reticulum and myeloid bodies of the sustentacular cells. The present study suggests that sustentacular cells and acinar cells of the Bowman's glands in the rat OM express at least three of the steroid-metabolizing enzymes, that is, P450scc 17ß-HSD-1, and 17ß-HSD-2, and de novo synthesis of estradiol takes place in the OM. Anat Rec, 300:402-414, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Aromatase/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Mucosa Olfatória/enzimologia , Animais , Retículo Endoplasmático/metabolismo , Ratos
7.
Anat Rec (Hoboken) ; 299(1): 88-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26565893

RESUMO

The vomeronasal organ (VNO) of 5-month-old fetuses was examined immunohistochemically by the use of an antiserum to protein gene product 9.5 (PGP). The purpose was to identify if the human fetal VNO is lined by neuroepithelium. The PGP antiserum labeled abundant cells within the vomeronasal epithelium (VE), nerve fiber bundles in its lamina propria, and cells associated with these bundles. PGP-immunoreactive (ir) vomeronasal epithelial cells were classified into three subtypes. Type I cells, about 44% of the total cells observed, did not have any processes and tended to be located in the basal layer of the VE. Type II cells, about 37% had a single apical process that projected toward the lumen, ending at the epithelial surface. Type III cells sent a prominent process mainly toward the basement membrane, and occupied about 19% of the total cells observed. In the lamina propria, a considerable number of PGP-ir cells was observed. Some of them were present in nerve fiber bundles and contained processes parallel to the bundles. In addition, PGP-ir nerve fiber bundles and cells associated with them were even present in the portion of the nasal septal mucosa that was very close to the brain. The present results strongly suggested that the VE in human fetuses at mid-gestation is a neuroepithelium and that the VE may produce migrating cells toward the brain.


Assuntos
Células Epiteliais/citologia , Feto/citologia , Septo Nasal/anatomia & histologia , Neurônios/citologia , Mucosa Olfatória/anatomia & histologia , Órgão Vomeronasal/anatomia & histologia , Células Epiteliais/metabolismo , Feminino , Feto/metabolismo , Humanos , Septo Nasal/metabolismo , Neurônios/metabolismo , Mucosa Olfatória/metabolismo , Gravidez , Proteínas/metabolismo , Órgão Vomeronasal/metabolismo
8.
Biol Pharm Bull ; 31(10): 1838-40, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18827338

RESUMO

Physiologic studies conducted in rats have demonstrated that afferent fibers of the gastric branch of the vagus nerve increase their firing rate with the intragastric administration of the amino acid glutamate, and the increased firing rate is blocked by the depletion of serotonin (5-HT), administration of the blocker for the serotonin type-3 receptor (SR3), or nitric oxide synthase (NOS). To understand glutamate signaling in the gastric mucosa at the cellular level, we have been studying rats as an animal model using anatomic and immunohistochemical procedures. Our results have indicated that 5-HT-immunoreactive (ir) cells are present in the superficial part of the gastric mucosal epithelium and in the base of the fundic glands, whereas immunoreactivity for SR3 is localized in the neck and its vicinity of the fundic glands. Further, NOS1/neuronal NOS-ir cells with a bipolar shape are located in the lamina propria where a dense network of neuronal cells is present. These results suggest that complex cellular events take place during intragastric glutamate signaling.


Assuntos
Receptores de Glutamato/fisiologia , Transdução de Sinais/fisiologia , Estômago/anatomia & histologia , Estômago/fisiologia , Animais , Humanos , Imuno-Histoquímica , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Estômago/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA