Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Microbiol Spectr ; 12(6): e0322723, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38647286

RESUMO

The triterpenoid saponins, ginsenosides, are the major bioactive compound of red ginseng and can exert various physiological activities. In the present study, we examined whether red ginseng extract (RGE) exerts antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). RGE had no bactericidal activity, at least in the range of dissolvable concentration. However, RGE reduced 0.03-0.25-fold the minimum inhibitory concentration (MIC) values of ß-lactam antibiotics (oxacillin, ampicillin, carbenicillin, and cefazolin) and aminoglycoside antibiotics (kanamycin and gentamicin) against the two laboratory strains of MRSA. Moreover, the fractional inhibitory concentration index indicated the synergistic activity of RGE with each of the antibiotics. RGE also increased the kanamycin sensitivity of 15 MRSA strains isolated from human volunteers and increased the ampicillin sensitivity of five MRSA strains isolated from dairy cows diagnosed with bovine mastitis. In contrast, RGE did not alter the MIC values of fosfomycin, tetracycline, and erythromycin, suggesting that RGE acts selectively. In contrast, Triton X-100, which was reported to reduce the MIC value of ß-lactam antibiotics to MRSA by increasing membrane permeability, reduced the MIC values of fosfomycin and tetracycline. These results indicate that RGE increases the bactericidal effect of antibiotics via a mechanism different from that used by Triton X-100. We found that ginsenoside Rg3 (Rg3), a component of RGE, was an essential compound that exhibits synergy activity with antibiotics. Furthermore, the non-natural compound K, which contains a common protopanaxadiol aglycon moiety with Rg3, also showed synergistic activity with antibiotics. Thus, Rg3 and compound K are potentially new antibiotic adjuvants against MRSA.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant organism that is prevalent worldwide. Therefore, the research and development of new agents against MRSA are required. We first found that ginsenoside Rg3 (Rg3) in red ginseng, made from the roots of Panax ginseng C. A. Meyer, increased the sensitivity of ß-lactam antibiotics and aminoglycoside antibiotics to MRSA. Furthermore, we identified that compound K, an unnatural ginsenoside analog, also increased the sensitivity of antibiotics to MRSA, similar to Rg3. By contrast, neither Rg3 nor compound K increased the sensitivity of fosfomycin, tetracycline, and erythromycin to MRSA, suggesting that these act selectively. In the present study, the natural compound Rg3 and its structural isomer, compound K, are potentially new antibiotic adjuvants against MRSA. Currently, multiple antibiotics are used to treat MRSA, but the use of these adjuvants is expected to enable the treatment of MRSA with a single antibiotic and low concentrations of antibiotics.


Assuntos
Aminoglicosídeos , Antibacterianos , Sinergismo Farmacológico , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Panax , Infecções Estafilocócicas , beta-Lactamas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Panax/química , Humanos , Animais , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Bovinos , Aminoglicosídeos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Saponinas/farmacologia , Ginsenosídeos/farmacologia , Feminino , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico
2.
Microbiol Immunol ; 68(4): 123-129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318657

RESUMO

Typical pathogenic bacteria of the genus Bordetella cause respiratory diseases, many of which are characterized by severe coughing in host animals. In human infections with these bacteria, such as whooping cough, coughing imposes a heavy burden on patients. The pathophysiology of this severe coughing had long been uncharacterized because convenient animal models that reproduce Bordetella-induced cough have not been available. However, rat and mouse models were recently shown as useful for understanding, at least partially, the causative factors and the mechanism of Bordetella-induced cough. Many types of coughs are induced under various physiological conditions, and the neurophysiological pathways of coughing are considered to vary among animal species, including humans. However, the neurophysiological mechanisms of the coughs in different animal species have not been entirely understood, and, accordingly, the current understanding of Bordetella-induced cough is still incomplete. Nevertheless, recent research findings may open the way for the development of prophylaxis and therapeutic measures against Bordetella-induced cough.


Assuntos
Bordetella pertussis , Coqueluche , Camundongos , Humanos , Ratos , Animais , Coqueluche/microbiologia , Tosse/microbiologia , Modelos Animais de Doenças
3.
Microbiol Immunol ; 68(2): 36-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105571

RESUMO

The Gram-negative pathogenic bacterium Bordetella bronchiseptica is a respiratory pathogen closely related to Bordetella pertussis, the causative agent of whooping cough. Despite sharing homologous virulence factors, B. bronchiseptica infects a broad range of mammalian hosts, including some experimental animals, whereas B. pertussis is strictly adapted to humans. Therefore, B. bronchiseptica is often used as a representative model to explore the pathogenicity of Bordetella in infection experiments with laboratory animals. Although Bordetella virulence factors, including toxins and adhesins have been studied well, our recent study implied that unknown virulence factors are involved in tracheal colonization and infection. Here, we investigated bacterial genes contributing to tracheal colonization by high-throughput transposon sequencing (Tn-seq). After the screening, we picked up 151 candidate genes of various functions and found that a rpoN-deficient mutant strain was defective in tracheal colonization when co-inoculated with the wild-type strain. rpoN encodes σ54 , a sigma factor that regulates the transcription of various genes, implying its contribution to various bacterial activities. In fact, we found RpoN of B. bronchiseptica is involved in bacterial motility and initial biofilm formation. From these results, we propose that RpoN supports bacterial colonization by regulating various bacteriological functions.


Assuntos
Infecções por Bordetella , Bordetella bronchiseptica , Bordetella , Animais , Humanos , Bordetella bronchiseptica/genética , RNA Polimerase Sigma 54 , Bordetella pertussis/genética , Fatores de Virulência de Bordetella/genética , Fatores de Virulência/genética , Mamíferos
4.
mSystems ; 8(6): e0072223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37975681

RESUMO

IMPORTANCE: Determining antigen and epitope specificity is an essential step in the discovery of therapeutic antibodies as well as in the analysis adaptive immune responses to disease or vaccination. Despite extensive efforts, deciphering antigen specificity solely from BCR amino acid sequence remains a challenging task, requiring a combination of experimental and computational approaches. Here, we describe and experimentally validate a simple and straightforward approach for grouping antibodies that share antigen and epitope specificities based on their CDR sequence similarity. This approach allows us to identify the specificities of a large number of antibodies whose antigen targets are unknown, using a small fraction of antibodies with well-annotated binding specificities.


Assuntos
Anticorpos , Regiões Determinantes de Complementaridade , Regiões Determinantes de Complementaridade/genética , Anticorpos/química , Antígenos/química , Epitopos/química , Imunidade , Análise por Conglomerados
5.
Proc Natl Acad Sci U S A ; 120(40): e2308260120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748060

RESUMO

The pathogenic bacteria Bordetella pertussis and Bordetella parapertussis cause pertussis (whooping cough) and pertussis-like disease, respectively, both of which are characterized by paroxysmal coughing. We previously reported that pertussis toxin (PTx), which inactivates heterotrimeric GTPases of the Gi family through ADP-ribosylation of their α subunits, causes coughing in combination with Vag8 and lipid A in B. pertussis infection. In contrast, the mechanism of cough induced by B. parapertussis, which produces Vag8 and lipopolysaccharide (LPS) containing lipid A, but not PTx, remained to be elucidated. Here, we show that a toxin we named deacylating autotransporter toxin (DAT) of B. parapertussis inactivates heterotrimeric Gi GTPases through demyristoylation of their α subunits and contributes to cough production along with Vag8 and LPS. These results indicate that DAT plays a role in B. parapertussis infection in place of PTx.


Assuntos
Bordetella parapertussis , Toxinas Biológicas , Coqueluche , Humanos , Sistemas de Secreção Tipo V , Tosse , Lipídeo A , Lipopolissacarídeos/toxicidade , Bordetella pertussis , Toxina Pertussis
6.
Microbiol Resour Announc ; 12(9): e0040023, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37489889

RESUMO

We report the complete genome sequences of nine Burkholderia pseudomallei strains preserved in research facilities in Japan; GTC3P0019, GTC3P0050, GTC3P0054, GTC3P0254T (type strain), Kanagawa, Tokushima, KM376, KM390, and KM391. The genomic information of these strains may provide references for comparative studies of B. pseudomallei pathogenicity.

7.
Microbiol Immunol ; 67(6): 314-317, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36976834

RESUMO

Bordetella pertussis causes pertussis, which is characterized by paroxysmal coughing. This disease is generally prevented through vaccination; however, the number of pertussis cases is increasing worldwide despite high vaccination coverage. We previously reported that an autotransporter of B. pertussis, virulence-associated gene 8 (Vag8), causes coughing in combination with pertussis toxin and lipooligosaccharide. Here, we show that immunization with Vag8 protected mice from coughing after B. pertussis infection and enhanced the efficacy of a current pertussis vaccine containing pertussis toxoid against the cough. Our findings indicate that Vag8 could be a vaccine antigen to prevent pertussis cough.


Assuntos
Infecções por Bordetella , Coqueluche , Camundongos , Animais , Bordetella pertussis/genética , Coqueluche/prevenção & controle , Sistemas de Secreção Tipo V/genética , Tosse/prevenção & controle , Tosse/etiologia , Virulência , Vacina contra Coqueluche , Vacinação
8.
Microbiol Spectr ; : e0048723, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971600

RESUMO

The respiratory pathogenic bacterium Bordetella bronchiseptica can persistently survive in terrestrial and aquatic environments, providing a source of infection. However, the environmental lifestyle of the bacterium is poorly understood. In this study, expecting repeated encounters of the bacteria with environmental protists, we explored the interaction between B. bronchiseptica and a representative environmental amoeba, Acanthamoeba castellanii, and found that the bacteria resisted amoeba digestion and entered contractile vacuoles (CVs), which are intracellular compartments involved in osmoregulation, to escape amoeba cells. In prolonged coculture, A. castellanii supported the proliferation of B. bronchiseptica. The avirulent Bvg- phase, but not the virulent Bvg+ phase, of the bacteria was advantageous for survival in the amoebae. We further demonstrate that two Bvg+ phase-specific virulence factors, filamentous hemagglutinin and fimbriae, were targeted for predation by A. castellanii. These results are evidence that the BvgAS two-component system, the master regulator for Bvg phase conversion, plays an indispensable role in the survival of B. bronchiseptica in amoebae. IMPORTANCE The pathogenic bacterium Bordetella bronchiseptica, which causes respiratory diseases in various mammals, exhibits distinct Bvg+ and Bvg- phenotypes. The former represents the virulent phase, in which the bacteria express a set of virulence factors, while the role of the latter in the bacterial life cycle remains to be understood. In this study, we demonstrate that B. bronchiseptica in the Bvg- phase, but not the Bvg+ phase, survives and proliferates in coculture with Acanthamoeba castellanii, an environmental amoeba. Two Bvg+ phase-specific virulence factors, filamentous hemagglutinin and fimbriae, were targeted by A. castellanii predation. B. bronchiseptica turns into the Bvg- phase at temperatures in which the bacteria normally encounter these amoebae. These findings demonstrate that the Bvg- phase of B. bronchiseptica is advantageous for survival outside mammalian hosts and that the bacteria can utilize protists as transient hosts in natural environments.

9.
mBio ; 14(1): e0305122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36648227

RESUMO

Extracellular vesicles are considered to be an inflammatory factor in several acute and chronic inflammatory diseases. The present study shows that exosomes from macrophages (Mφ) infected with live Escherichia coli induced secretion of proinflammatory factors by uninfected Mφ. Inflammatory responses induced by exosomes derived from Mφ infected with heat-inactivated E. coli or lipopolysaccharide were significantly weaker than those elicited by outer membrane vesicles (OMVs) released from live E. coli. Proteome analysis of exosomes from Mφ infected with live or heat-inactivated E. coli revealed that E. coli proteins OmpA, GroL1, DegP, CirA, and FepA are candidate triggers of exosome-mediated inflammatory responses. OMVs from a cirA-deleted strain suppressed exosome-mediated inflammatory responses by uninfected Mφ. The C terminus of the CirA protein (residues 158 to 633), which was relayed from E. coli-derived OMV to Mφ-derived exosomes, promoted exosome-mediated inflammatory responses by uninfected Mφ. These results suggest an alternative mechanism by which extracellular vesicles from E. coli OMV-elicited Mφ transmit proinflammatory responses to uninfected Mφ. IMPORTANCE Recently, extracellular membrane vesicles (EVs) were regarded as drivers that carry cargo such as proteins, lipids, metabolites, RNA, and DNA for intracellular signaling transduction. Mammalian cells release various types of EVs, including microvesicles shed from the plasma membrane, exosomes from endosomes, apoptotic bodies, and others. EVs have been reported to mediate inflammatory signals between mammalian cells. In addition, bacteria are also known to release EVs to carry various bacterial factors. In this study, we show that bacterial EVs lead host mammalian cells to release stimulatory EVs that enhance inflammatory responses. Our results provide a novel example that bacterial EVs transduce biological signals to mammalian EVs.


Assuntos
Proteínas de Escherichia coli , Exossomos , Vesículas Extracelulares , Animais , Exossomos/metabolismo , Escherichia coli/metabolismo , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Mamíferos/metabolismo
10.
Sci Adv ; 8(51): eade8971, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542710

RESUMO

Bacterial small RNAs (sRNAs) posttranscriptionally regulate gene expressions involved in various biological processes, including pathogenicity. Our previous study identified sRNAs, the expression of which was up-regulated in Bordetella pertussis, the causative agent of whooping cough, upon tracheal colonization of the bacteria; however, their roles in bacterial infection remain unknown. Here, we found that one sRNA, Bpr4, contributes to B. pertussis infection by posttranscriptionally up-regulating filamentous hemagglutinin (FHA), a major adhesin of the bacteria. Bpr4 bound to the 5' untranslated region of fhaB mRNA encoding FHA and inhibited its degradation mediated by RNaseE. Our results demonstrated that Bpr4 up-regulation was triggered by the interference of flagellar rotation, which caused the disengagement of MotA, a flagellar stator. Subsequently, MotA activated a diguanylate cyclase to generate cyclic di-GMP, which plays a role in Bpr4 up-regulation through the RisK/RisA two-component system. Our findings indicate that a flagellum-triggered sensory system contributes to B. pertussis infection.

11.
Comput Struct Biotechnol J ; 20: 6033-6040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348766

RESUMO

To assess the frequency of SARS-CoV-2 infection in the general population, we searched over 64 million heavy chain antibody sequences from healthy unvaccinated, healthy BNT162b2 vaccinated and COVID-19 patient repertoires for sequences similar to 11 previously reported enhancing antibodies. Although the distribution of sequence identities was similar in all three groups of repertoires, the COVID-19 and healthy vaccinated hits were significantly more clonally expanded than healthy unvaccinated hits. Furthermore, among the tested hits, 17 out of 94 from COVID-19 and 9 out of 59 from healthy vaccinated, compared with only 2 out of 96 from healthy unvaccinated, bound to the enhancing epitope. A total of 9 of the 28 epitope-binding antibodies enhanced ACE2 receptor binding to the spike protein. Together, this study revealed that infection enhancing-like antibodies are far more frequent in COVID-19 patients or healthy vaccinated donors than in healthy unvaccinated donors, but a reservoir of potential enhancing antibodies exists in healthy donors that could potentially mature to actual enhancing antibodies upon infection.

13.
mBio ; 13(2): e0319721, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357202

RESUMO

Pertussis, also known as whooping cough, is a contagious respiratory disease caused by the Gram-negative bacterium Bordetella pertussis. This disease is characterized by severe and uncontrollable coughing, which imposes a significant burden on patients. However, its etiological agent and the mechanism are totally unknown because of a lack of versatile animal models that reproduce the cough. Here, we present a mouse model that reproduces coughing after intranasal inoculation with the bacterium or its components and demonstrate that lipooligosaccharide (LOS), pertussis toxin (PTx), and Vag8 of the bacterium cooperatively function to cause coughing. Bradykinin induced by LOS sensitized a transient receptor potential ion channel, TRPV1, which acts as a sensor to evoke the cough reflex. Vag8 further increased bradykinin levels by inhibiting the C1 esterase inhibitor, the major downregulator of the contact system, which generates bradykinin. PTx inhibits intrinsic negative regulation systems for TRPV1 through the inactivation of Gi GTPases. Our findings provide a basis to answer long-standing questions on the pathophysiology of pertussis cough. IMPORTANCE The Gram-negative bacterium Bordetella pertussis causes a respiratory disease called whooping cough, or pertussis. This disease is characterized by paroxysmal coughing, the mechanism of which has not been intensively studied because of a lack of versatile animal models that reproduce the cough. In this study, we present a mouse model that reproduces coughing after intranasal inoculation with the bacterium or its components. Using this model, we demonstrate that lipooligosaccharide, Vag8, and pertussis toxin of the bacteria cooperatively function to cause coughing. Our results also indicate that bradykinin, an inflammatory mediator, and TRPV1, an ion channel linked to nociceptive signaling, are host factors involved in the coughing mechanism.


Assuntos
Coqueluche , Animais , Bordetella pertussis/fisiologia , Bradicinina , Tosse/etiologia , Modelos Animais de Doenças , Humanos , Camundongos , Toxina Pertussis , Fatores de Transcrição , Coqueluche/microbiologia
14.
mSphere ; 6(5): e0081921, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643424

RESUMO

Bordetella parapertussis causes respiratory infection in humans, with a mild pertussis (whooping cough)-like disease. The organism produces a brown pigment, the nature and biological significance of which have not been elucidated. Here, by screening a transposon library, we demonstrate that the gene encoding 4-hydroxyphenylpyruvate dioxygenase (HppD) is responsible for production of this pigment. Our results also indicate that the brown pigment produced by the bacterium is melanin, because HppD is involved in the biosynthesis of a type of melanin called pyomelanin, and homogentisic acid, the monomeric precursor of pyomelanin, was detected by high-performance liquid chromatography-mass spectrometry analyses. In an infection assay using macrophages, the hppD-deficient mutant was internalized by THP-1 macrophage-like cells, similar to the wild-type strain, but was less able to survive within the cells, indicating that melanin protects B. parapertussis from intracellular killing in macrophages. Mouse infection experiments also showed that the hppD-deficient mutant was eliminated from the respiratory tract more rapidly than the wild-type strain, although the initial colonization levels were comparable between the two strains. In addition, melanin production by B. parapertussis was not regulated by the BvgAS two-component system, which is the master regulator for the expression of genes contributing to the bacterial infection. Taken together, our findings indicate that melanin produced by B. parapertussis in a BvgAS-independent manner confers a survival advantage to the bacterium during host infection. IMPORTANCE In addition to the Gram-negative bacterium Bordetella pertussis, the etiological agent of pertussis, Bordetella parapertussis also causes respiratory infection in humans, with a mild pertussis-like disease. These bacteria are genetically closely related and share many virulence factors, including adhesins and toxins. However, B. parapertussis is clearly distinguished from B. pertussis by its brown pigment production, the bacteriological significance of which remains unclear. Here, we demonstrate that this pigment is melanin, which is known to be produced by a wide range of organisms from prokaryotes to humans and helps the organisms to survive under various environmental stress conditions. Our results show that melanin confers a survival advantage to B. parapertussis within human macrophages through its protective effect against reactive oxygen species and eventually contributes to respiratory infection of the bacterium in mice. This study proposes melanin as a virulence factor involved in the increased survival of B. parapertussis during host infection.


Assuntos
Bordetella parapertussis/patogenicidade , Melaninas/metabolismo , Melaninas/fisiologia , Pigmentação da Pele/fisiologia , Coqueluche/metabolismo , Adesinas Bacterianas/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções Respiratórias/etiologia , Células THP-1 , Fatores de Virulência/metabolismo , Coqueluche/microbiologia
15.
Toxins (Basel) ; 12(9)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942577

RESUMO

Pathogenic Bordetella bacteria release a neurotropic dermonecrotic toxin (DNT) that is endocytosed into animal cells and permanently activates the Rho family GTPases by polyamination or deamidation of the glutamine residues in their switch II regions (e.g., Gln63 of RhoA). DNT was found to enable high level colonization of the nasal cavity of pigs by B. bronchiseptica and the capacity of DNT to inhibit differentiation of nasal turbinate bone osteoblasts causes atrophic rhinitis in infected pigs. However, it remains unknown whether DNT plays any role also in virulence of the human pathogen B. pertussis and in pathogenesis of the whooping cough disease. We report a procedure for purification of large amounts of LPS-free recombinant DNT that exhibits a high biological activity on cells expressing the DNT receptors Cav3.1 and Cav3.2. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the DNT molecule adopts a V-shaped structure with well-resolved protein domains. These results open the way to structure-function studies on DNT and its interactions with airway epithelial layers.


Assuntos
Bordetella pertussis/enzimologia , Células Epiteliais/metabolismo , Transglutaminases/metabolismo , Fatores de Virulência de Bordetella/metabolismo , Células 3T3 , Células A549 , Animais , Animais Recém-Nascidos , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Necrose , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Relação Estrutura-Atividade , Transglutaminases/genética , Transglutaminases/toxicidade , Transglutaminases/ultraestrutura , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/toxicidade
16.
Nat Commun ; 11(1): 3571, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678094

RESUMO

Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in Bartonella henselae to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen, Bartonella quintana, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bartonella/patogenicidade , Neovascularização Patológica/metabolismo , Transdução de Sinais , Sistemas de Secreção Tipo V/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Bartonella/classificação , Bartonella/genética , Proliferação de Células , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/microbiologia , Domínios Proteicos , Sistemas de Secreção Tipo V/química , Sistemas de Secreção Tipo V/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética
17.
Microbiol Immunol ; 64(8): 570-573, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32396237

RESUMO

An autotransporter of Bordetella pertussis, virulence-associated gene 8 (Vag8), binds and inactivates the complement regulator, C1 inhibitor (C1-Inh), and plays a role in evasion of the complement system. However, the molecular interaction between Vag8 and C1-Inh remains unclear. Here, we localized the minimum region of Vag8 required for interaction with C1-Inh by examining the differently truncated Vag8 derivatives for the ability to bind and inactivate C1-Inh. The truncated Vag8 containing amino-acid residues 102-548, but not 102-479 and 202-648, showed the full activity of intact Vag8, suggesting that the separate 102-202 and 548-648 amino-acid regions of Vag8 mediate the interaction with C1-Inh.


Assuntos
Proteínas de Bactérias/genética , Bordetella pertussis/genética , Proteína Inibidora do Complemento C1/imunologia , Sistemas de Secreção Tipo V/genética , Sequência de Aminoácidos , Proteínas de Bactérias/imunologia , Bordetella pertussis/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Ligação Proteica , Sistemas de Secreção Tipo V/imunologia , Virulência/genética , Coqueluche/microbiologia
18.
Microbiol Immunol ; 64(6): 469-475, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32227523

RESUMO

We performed RNA sequencing on Bordetella pertussis, the causative agent of whooping cough, and identified nine novel small RNAs (sRNAs) that were transcribed during the bacterial colonization of murine tracheas. Among them, four sRNAs were more strongly expressed in vivo than in vitro. Moreover, the expression of eight sRNAs was not regulated by the BvgAS two-component system, which is the master regulator for the expression of genes contributing to the bacterial infection. The present results suggest a BvgAS-independent gene regulatory system involving the sRNAs that is active during B. pertussis infection.


Assuntos
Bordetella pertussis , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Traqueia/microbiologia , Coqueluche/microbiologia , Animais , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Genes Reguladores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traqueia/patologia , Fatores de Transcrição/genética , Virulência/genética , Fatores de Virulência de Bordetella/genética
19.
mBio ; 11(2)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209694

RESUMO

Dermonecrotic toxin (DNT) is one of the representative toxins produced by Bordetella pertussis, but its role in pertussis, B. pertussis infection, remains unknown. In this study, we identified the T-type voltage-gated Ca2+ channel CaV3.1 as the DNT receptor by CRISPR-Cas9-based genome-wide screening. As CaV3.1 is highly expressed in the nervous system, the neurotoxicity of DNT was examined. DNT affected cultured neural cells and caused flaccid paralysis in mice after intracerebral injection. No neurological symptoms were observed by intracerebral injection with the other major virulence factors of the organisms, pertussis toxin and adenylate cyclase toxin. These results indicate that DNT has aspects of the neurotropic virulence factor of B. pertussis The possibility of the involvement of DNT in encephalopathy, which is a complication of pertussis, is also discussed.IMPORTANCEBordetella pertussis, which causes pertussis, a contagious respiratory disease, produces three major protein toxins, pertussis toxin, adenylate cyclase toxin, and dermonecrotic toxin (DNT), for which molecular actions have been elucidated. The former two toxins are known to be involved in the emergence of some clinical symptoms and/or contribute to the establishment of bacterial infection. In contrast, the role of DNT in pertussis remains unclear. Our study shows that DNT affects neural cells through specific binding to the T-type voltage-gated Ca2+ channel that is highly expressed in the central nervous system and leads to neurological disorders in mice after intracerebral injection. These data raise the possibility of DNT as an etiological agent for pertussis encephalopathy, a severe complication of B. pertussis infection.


Assuntos
Bordetella pertussis/patogenicidade , Canais de Cálcio Tipo T/metabolismo , Receptores de Superfície Celular/metabolismo , Transglutaminases/metabolismo , Fatores de Virulência de Bordetella/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Glioblastoma , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores de Superfície Celular/genética , Organismos Livres de Patógenos Específicos , Transglutaminases/genética , Fatores de Virulência/genética , Fatores de Virulência de Bordetella/genética , Coqueluche/microbiologia
20.
Microbiol Immunol ; 63(12): 513-516, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31489969

RESUMO

Bordetella pertussis, B. parapertussis, and B. bronchiseptica cause respiratory infections in mammals, including humans, and are generally cultivated on Bordet-Gengou (BG) agar plates in laboratories. The medium requires animal blood as a supplement for better bacterial growth. However, using blood is problematic, as its constant supply is occasionally difficult because of the limited shelf-life. This study proposes modified BG agar plates supplemented with bovine serum albumin and fetal bovine serum as a simple and convenient medium that confers sufficient growth of bordetellae.


Assuntos
Produtos Biológicos , Bordetella bronchiseptica/crescimento & desenvolvimento , Bordetella parapertussis/crescimento & desenvolvimento , Bordetella pertussis/crescimento & desenvolvimento , Meios de Cultura/química , Soroalbumina Bovina/análise , Ágar , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA