Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Dev Cell ; 59(2): 187-198.e7, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38198888

RESUMO

Chromatin organization is essential for maintaining cell-fate trajectories and developmental programs. Here, we find that disruption of H3K36 methylation dramatically impairs normal epithelial differentiation and development, which promotes increased cellular plasticity and enrichment of alternative cell fates. Specifically, we observe a striking increase in the aberrant generation of excessive epithelial glandular tissues, including hypertrophic salivary, sebaceous, and meibomian glands, as well as enhanced squamous tumorigenesis. These phenotypic and gene expression manifestations are associated with loss of H3K36me2 and rewiring of repressive H3K27me3, changes we also observe in human patients with glandular hyperplasia. Collectively, these results have identified a critical role for H3K36 methylation in both in vivo epithelial cell-fate decisions and the prevention of squamous carcinogenesis and suggest that H3K36 methylation modulation may offer new avenues for the treatment of numerous common disorders driven by altered glandular function, which collectively affect large segments of the human population.


Assuntos
Carcinoma de Células Escamosas , Histonas , Humanos , Histonas/metabolismo , Plasticidade Celular , Metilação , Carcinogênese/genética , Carcinoma de Células Escamosas/genética
3.
Sci Transl Med ; 14(630): eabj0324, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108061

RESUMO

Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor κB (NF-κB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1)+ fibroblast subpopulation. Disruption of Ikkb-NF-κB under homeostatic conditions in these fibroblasts paradoxically induced skin inflammation due to the overexpression of C-C motif chemokine ligand 11 (CCL11; or eotaxin-1) characterized by eosinophil infiltration and a subsequent TH2 immune response. Because the inflammatory phenotype resembled that seen in human atopic dermatitis (AD), we examined human AD skin samples and found that human AD fibroblasts also overexpressed CCL11 and that perturbation of Ikkb-NF-κB in primary human dermal fibroblasts up-regulated CCL11. Monoclonal antibody treatment against CCL11 was effective in reducing the eosinophilia and TH2 inflammation in a mouse model. Together, the murine model and human AD specimens point to dysregulated Prx1+ fibroblasts as a previously unrecognized etiologic factor that may contribute to the pathogenesis of AD and suggest that targeting CCL11 may be a way to treat AD-like skin lesions.


Assuntos
Dermatite Atópica , Animais , Inteligência Artificial , Dermatite Atópica/patologia , Fibroblastos/patologia , Imunidade , Camundongos , NF-kappa B/metabolismo , Pele/patologia
4.
Biomolecules ; 11(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34944426

RESUMO

Regeneration, the restoration of body parts after injury, is quite widespread in the animal kingdom. Species from virtually all Phyla possess regenerative abilities. Human beings, however, are poor regenerators. Yet, the progress of knowledge and technology in the fields of bioengineering, stem cells, and regenerative biology have fostered major advancements in regenerative medical treatments, which aim to regenerate tissues and organs and restore function. Human induced pluripotent stem cells can differentiate into any cell type of the body; however, the structural and cellular complexity of the human tissues, together with the inability of our adult body to control pluripotency, require a better mechanistic understanding. Planarians, with their capacity to regenerate lost body parts thanks to the presence of adult pluripotent stem cells could help providing such an understanding. In this paper, we used a top-down approach to shortlist blastema transcription factors (TFs) active during anterior regeneration. We found 44 TFs-31 of which are novel in planarian-that are expressed in the regenerating blastema. We analyzed the function of half of them and found that they play a role in the regeneration of anterior structures, like the anterior organizer, the positional instruction muscle cells, the brain, the photoreceptor, the intestine. Our findings revealed a glimpse of the complexity of the transcriptional network governing anterior regeneration in planarians, confirming that this animal model is the perfect playground to study in vivo how pluripotency copes with adulthood.


Assuntos
Perfilação da Expressão Gênica/métodos , Planárias/fisiologia , Fatores de Transcrição/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/genética , Planárias/citologia , Regeneração , Análise de Sequência de RNA
5.
J Carcinog ; 20: 21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34729053

RESUMO

AIM: Elevated Src-Family tyrosine kinase (SFK) activity drives carcinogenesis in vivo and elevated SFK activity is found ubiquitously in human cancers. Although human squamous cell carcinomas (SCCs) demonstrate increased SFK activity, in silico analysis of SCCs demonstrates that only 0.4% of lesions contain mutations that could potentially increase SFK activity; similarly, a low frequency of activating SFK mutations is found in other major cancers. These findings indicate that SFK activation in cancers likely is not due to activating mutations but alternative mechanisms. To evaluate potential alternative mechanisms, we evaluated the selectivity of c-Cbl and Srcasm in downregulating native and activated mutant forms of SFKs. MATERIALS AND METHODS: We co-transfected native and activated forms of Src and Fyn with c-Cbl and Srcasm into HaCaT cells and monitored the ability of Srcasm and c-Cbl to downregulate native and activated forms of SFKs by Western blotting. The mechanism of downregulation was probed using mutant forms of Srcasm and c-Cbl and using proteosomal and lysosomal inhibition. RESULTS: The data indicate that Srcasm downregulates native Fyn and Src more effectively than c-Cbl, whereas c-Cbl preferentially downregulates activated SFK mutants, including Fyn Y528F, more effectively than Srcasm. Srcasm downregulates SFKs through a lysosomal-dependent mechanism while c-Cbl utilizes a proteosomal-dependent mechanism. CONCLUSION: Given the rarity of activating SFK mutations in human cancer, these data indicate that decreasing Srcasm level/function may represent a mechanism for increasing SFK activity in SCC and other human tumors.

6.
Cell Stem Cell ; 28(7): 1233-1247.e4, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984283

RESUMO

The functional heterogeneity of resident stem cells that support adult organs is incompletely understood. Here, we directly visualize the corneal limbus in the eyes of live mice and identify discrete stem cell niche compartments. By recording the life cycle of individual stem cells and their progeny, we directly analyze their fates and show that their location within the tissue can predict their differentiation status. Stem cells in the inner limbus undergo mostly symmetric divisions and are required to sustain the population of transient progenitors that support corneal homeostasis. Using in situ photolabeling, we captured their progeny exiting the niche before moving centripetally in unison. The long-implicated slow-cycling stem cells are functionally distinct and display local clonal dynamics during homeostasis but can contribute to corneal regeneration after injury. This study demonstrates how the compartmentalized organization of functionally diverse stem cell populations supports the maintenance and regeneration of an adult organ.


Assuntos
Epitélio Corneano , Limbo da Córnea , Animais , Diferenciação Celular , Córnea , Camundongos , Células-Tronco
7.
J Invest Dermatol ; 141(2): 295-307.e13, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32649944

RESUMO

Squamous cell carcinoma in situ (SCCIS) is a prevalent precancerous lesion that can progress to cutaneous squamous cell carcinoma. Although SCCIS is common, its pathogenesis remains poorly understood. To better understand SCCIS development, we performed laser captured microdissection of human SCCIS and the adjacent epidermis to isolate genomic DNA and RNA for next-generation sequencing. Whole-exome sequencing identified UV-signature mutations in multiple genes, including NOTCH1-3 in the epidermis and SCCIS and oncogenic TP53 mutations in SCCIS. Gene families, including SLFN genes, contained UV/oxidative-signature disruptive epidermal mutations that manifested positive selection in SCCIS. The frequency and distribution of NOTCH and TP53 mutations indicate that NOTCH mutations may precede TP53 mutations. RNA sequencing identified 1,166 differentially expressed genes; the top five enriched gene ontology biological processes included (i) immune response, (ii) epidermal development, (iii) protein phosphorylation, (iv) regulation of catalytic activity, and (v) cytoskeletal regulation. The NEURL1 ubiquitin ligase, which targets Notch ligands for degradation, was upregulated in SCCIS. NEURL1 protein was found to be elevated in SCCIS suggesting that increased levels could represent a mechanism for downregulating Notch during UV-induced carcinogenesis. The data from DNA and RNA sequencing of epidermis and SCCIS provide insights regarding SCCIS formation.


Assuntos
Carcinoma in Situ/etiologia , Carcinoma de Células Escamosas/etiologia , Epiderme/efeitos da radiação , Exoma , Perfilação da Expressão Gênica , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Cutâneas/etiologia , Carcinogênese/genética , Carcinoma in Situ/genética , Carcinoma de Células Escamosas/genética , Genes p53 , Humanos , Mutação , Neoplasias Induzidas por Radiação/genética , Receptores Notch/genética , Análise de Sequência de RNA , Neoplasias Cutâneas/genética , Raios Ultravioleta
8.
Nutr J ; 18(1): 11, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30791913

RESUMO

BACKGROUND: The nutritional status of school-aged children in Cambodia remains largely unknown. No tools for large-scale assessment of daily nutrient intake exist for this population, making development of appropriate intervention strategies difficult. Thus, we aimed to devise and validate a food frequency questionnaire (FFQ) that is suitable for and dedicated to assessing the dietary intake of macronutrients and calcium in school-aged children in Cambodia. METHODS: We developed an FFQ based on data from a single 24-h recall survey of 2020 children. The final list, which was developed as specified in the Block method and stepwise multiple regression analysis, comprised of 56 food items covering intake of energy, macronutrients, and calcium. We assessed the validity of the FFQ by comparison with a duplicated 24-h recall survey before and after de-attenuation. We also tested the reproducibility by comparing the first and second FFQs (FFQ1 and FFQ2) administered at an interval of approximately 6 weeks. RESULTS: The 56 food items in the FFQ accounted for 73.3% of the dietary calcium intake of Cambodian children and explained most of the inter-individual variation (cumulative R2: 0.96). The intake estimated by the FFQ was lower than the average intake across the two 24-h recall surveys. Spearman's correlation coefficients for comparison between FFQ1 and FFQ2 ranged from 0.29 for fat to 0.47 for calcium. After de-attenuation of data, Pearson's correlation coefficients ranged from 0.38 for fat to 0.71 for energy. Cross-classification analysis indicated that the average percentage of the subjects classified in the same or adjacent quartiles was 78.0%. CONCLUSIONS: The FFQ is potentially a reliable scale for measuring nutrient intake in this population.


Assuntos
Cálcio da Dieta/administração & dosagem , Inquéritos sobre Dietas , Nutrientes/administração & dosagem , Adolescente , Índice de Massa Corporal , Camboja , Criança , Dieta , Registros de Dieta , Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Feminino , Humanos , Masculino , Rememoração Mental
9.
Nutrients ; 11(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577546

RESUMO

This study aimed to describe the nutritional status and dietary patterns of Cambodian school-aged children compared with those in the South East Asian Nutrition Survey (SEANUTS; Indonesia, Malaysia, Thailand, and Vietnam in 2011) and to clarify the urban-rural differences using data from a nationally representative sample. The survey was conducted in 2014/2015 with a sample of 2020 children aged 6⁻17 years from 136 randomly selected schools. Standardized anthropometric measurements and a 1-day dietary survey by 24-hour recall method were conducted. Extended analyses in the present study revealed that the difference between rural and urban areas was similar to that of the SEANUTS; the overall prevalence of stunting remained high (33.2%). Stunting was more prevalent in children living in rural areas than in those in urban areas (total: 36.4% vs 20.4%). In contrast, the overall prevalence of overweight and obesity was not as high (3.1%), but was higher among urban children in all age groups compared with those living in rural areas (total: 6.4% vs 2.3%). Overall, the dietary intake of children did not meet the local recommended dietary allowances, which was similar to the results of the SEANUTS and differed across urban and rural areas.


Assuntos
Dieta/estatística & dados numéricos , Estado Nutricional , População Rural/estatística & dados numéricos , Estudantes/estatística & dados numéricos , População Urbana/estatística & dados numéricos , Adolescente , Antropometria , Sudeste Asiático/epidemiologia , Camboja/epidemiologia , Criança , Dieta/métodos , Inquéritos sobre Dietas , Feminino , Transtornos do Crescimento/epidemiologia , Humanos , Masculino , Obesidade/epidemiologia , Sobrepeso/epidemiologia , Prevalência , Instituições Acadêmicas
10.
J Neurochem ; 142(3): 378-391, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28512742

RESUMO

Differentiation of oligodendroglial progenitor cells (OPCs) into myelinating oligodendrocytes is known to be regulated by the microenvironment where they differentiate. However, current research has not verified whether or not oligodendroglial lineage cells (OLCs) derived from different anatomical regions of the central nervous system (CNS) respond to microenvironmental cues in the same manner. Here, we isolated pure OPCs from rat neonatal forebrain (FB) and spinal cord (SC) and compared their phenotypes in the same in vitro conditions. We found that although FB and SC OLCs responded differently to the same external factors; they were distinct in proliferation response to mitogens, oligodendrocyte phenotype after differentiation, and cytotoxic responses to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate receptor-mediated excitotoxicity at immature stages of differentiation in a cell-intrinsic manner. Moreover, transcriptome analysis identified genes differentially expressed between these OPC populations, including those encoding transcription factors (TFs), cell surface molecules, and signaling molecules. Particularly, FB and SC OPCs retained the expression of FB- or SC-specific TFs, such as Foxg1 and Hoxc8, respectively, even after serial passaging in vitro. Given the essential role of these TFs in the regional identities of CNS cells along the rostrocaudal axis, our results suggest that CNS region-specific gene regulation by these TFs may cause cell-intrinsic differences in cellular responses between FB and SC OLCs to extracellular molecules. Further understanding of the regional differences among OPC populations will help to improve treatments for demyelination in different CNS regions and to facilitate the development of stem cell-derived OPCs for cell transplantation therapies for demyelination. Cover Image for this issue: doi. 10.1111/jnc.13809.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Neurônios/citologia , Oligodendroglia/citologia , Prosencéfalo/citologia , Células-Tronco/citologia , Animais , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Regulação da Expressão Gênica/fisiologia , Oligodendroglia/metabolismo , Prosencéfalo/metabolismo , Ratos
11.
Exp Brain Res ; 225(2): 197-203, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23224701

RESUMO

Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in short-latency somatosensory-evoked potentials (SEPs). The aim of this study is to clarify whether specific training in athletes affects the long-latency SEPs related to information processing of stimulation. The long-latency SEPs P100 and N140 were recorded at midline cortical electrode positions (Fz, Cz, and Pz) in response to stimulation of the index finger of the dominant hand in fifteen baseball players (baseball group) and in fifteen athletes in sports such as swimming, track and field events, and soccer (sports group) that do not require fine somatosensory discrimination or motor control of the hand. The long-latency SEPs were measured under a passive condition (no response required) and a reaction time (RT) condition in which subjects were instructed to rapidly push a button in response to stimulus presentation. The peak P100 and peak N140 latencies and RT were significantly shorter in the baseball group than the sports group. Moreover, there were significant positive correlations between RT and both the peak P100 and the peak N140 latencies. Specific athletic training regimens that involve the hand may induce neuroplastic alterations in the cortical hand representation areas playing a vital role in rapid sensory processing and initiation of motor responses.


Assuntos
Beisebol/fisiologia , Encéfalo/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Tempo de Reação/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Movimento/fisiologia
12.
Life Sci ; 80(24-25): 2206-9, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17363003

RESUMO

Using a radioimmunoassay (RIA) with high specificity and sensitivity (1 pg/tube) for acetylcholine (ACh), we have been able to measure the ACh content in samples from the bacteria, archaea and eucarya domains of the universal phylogenetic tree. We found detectable levels of ACh to be ubiquitous in bacteria (e.g., Bacillus subtilis), archaea (e.g., Thermococcus kodakaraensis KOD1), fungi (e.g., shiitake mushroom and yeast), plants (e.g., bamboo shoot and fern) and animals (e.g., bloodworm and lugworm). The levels varied considerably, however, with the highest ACh content detected in the top portion of bamboo shoot (2.9 micromol/g), which contained about 80 times that found in rat brain. In addition, using the method of Fonnum, various levels of ACh-synthesizing activity also were detected, a fraction of which was catalyzed by a choline acetyltransferase (ChAT)-like enzyme (sensitive to bromoACh, a selective ChAT inhibitor) in T. kodakaraensis KOD1 (15%), bamboo shoot (91%) and shiitake mushroom (51%), bloodworm (91%) and lugworm (81%). Taken together, these findings demonstrate the ubiquitous expression of ACh and ACh-synthesizing activity among life forms without nervous systems, and support the notion that ACh has been expressed and may be active as a local mediator and modulator of physiological functions since the early beginning of life.


Assuntos
Acetilcolina/biossíntese , Archaea/metabolismo , Bactérias/metabolismo , Fungos/metabolismo , Plantas/metabolismo , Acetilcolina/análise , Animais , Archaea/enzimologia , Bactérias/enzimologia , Evolução Biológica , Colina O-Acetiltransferase/metabolismo , Ensaio de Imunoadsorção Enzimática , Fungos/enzimologia , Sistema Nervoso/enzimologia , Sistema Nervoso/metabolismo , Plantas/enzimologia
13.
J Neuroimmunol ; 144(1-2): 46-52, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14597097

RESUMO

We investigated the effects of apelin, an immunologically active peptide ligand for orphan receptor APJ, on acetylcholine (ACh) synthesis in MOLT-3 human leukemic T cells. We initially confirmed expression of APJ mRNA in several human T- and B-cell lines by reverse transcription-polymerase chain reaction (RT-PCR). We also found that in phytohemagglutinin (PHA)-stimulated MOLT-3 cells, an active apelin fragment, apelin-13, down-regulates expression of choline acetyltransferase (ChAT) mRNA and significantly reduces ChAT activity and cellular ACh content and release. It thus appears that apelin inhibits lymphocytic cholinergic activity via APJ during immunological responses.


Assuntos
Proteínas de Transporte/fisiologia , Antagonistas Colinérgicos , Regulação para Baixo/imunologia , Imunossupressores , Subpopulações de Linfócitos/enzimologia , Subpopulações de Linfócitos/imunologia , Acetilcolina/antagonistas & inibidores , Acetilcolina/metabolismo , Actinas/biossíntese , Actinas/genética , Apelina , Receptores de Apelina , Linhagem Celular Tumoral , Colina O-Acetiltransferase/antagonistas & inibidores , Colina O-Acetiltransferase/biossíntese , Colina O-Acetiltransferase/metabolismo , Antagonistas Colinérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Imunossupressores/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Células Jurkat , Leucemia de Células B/enzimologia , Leucemia de Células B/metabolismo , Leucemia de Células T/enzimologia , Leucemia de Células T/metabolismo , Subpopulações de Linfócitos/metabolismo , RNA Mensageiro/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética
14.
Life Sci ; 72(15): 1745-56, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12559395

RESUMO

Acetylcholine (ACh) is a well-known neurotransmitter in the cholinergic nervous systems of vertebrates and insects; however, there is only indirect evidence for its presence in lower invertebrates, such as plants and fungi. We therefore investigated the expression of ACh in invertebrates (sea squirt, sea urchin, trepang, squid, abalone, nereis, sea anemone, coral and sponge), plants (arabidopsis, eggplant, bamboo shoot, cedar, hinoki, pine, podcarp, fern, horsetail and moss), fungi (yeast and mushroom) and bacteria by assaying ACh content and synthesis, focusing on the presence of two synthetic enzymes, choline acetyltransferase (ChAT) and carnitine acetyltransferase (CarAT). Using a specific radioimmunoassay, ACh was detected in all samples tested. The levels varied considerably, however, with the upper portion of bamboo shoots having the highest content (2.9 micromol/g). ACh synthesis was also detected in all samples tested; moreover, the activity in most samples from the animal kingdom, as well as bamboo shoots and the stem of the shiitake mushroom, were sensitive to both ChAT and CarAT inhibitors. Levels of ACh synthesis were lower in samples from other plants, fungi and bacteria and were insensitive to ChAT and CarAT inhibitors. These findings demonstrate the presence of ACh and ACh-synthesizing activity in evolutionally primitive life as well as in more complex multicellular organisms. In the context of the recent discovery of non-neuronal ACh in various mammalian species, these findings suggest that ACh been expressed in organisms from the beginning of life, functioning as a local mediator as well as a neurotransmitter.


Assuntos
Acetilcolina/biossíntese , Acetilcolina/genética , Bactérias/metabolismo , Evolução Biológica , Fungos/metabolismo , Invertebrados/metabolismo , Plantas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Eletroquímica , Radioimunoensaio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA