RESUMO
BACKGROUND: Indices of ventilation heterogeneity (VH) from multiple breath washout (MBW) have been shown to correlate well with VH indices derived from hyperpolarised gas ventilation MRI. Here we report the prediction of ventilation distributions from MBW data using a mathematical model, and the comparison of these predictions with imaging data. METHODS: We developed computer simulations of the ventilation distribution in the lungs to model MBW measurement with 3 parameters: σV, determining the extent of VH; V0, the lung volume; and VD, the dead-space volume. These were inferred for each individual from supine MBW data recorded from 25 patients with cystic fibrosis (CF) using approximate Bayesian computation. The fitted models were used to predict the distribution of gas imaged by 3He ventilation MRI measurements collected from the same visit. RESULTS: The MRI indices measured (I1/3, the fraction of pixels below one-third of the mean intensity and ICV, the coefficient of variation of pixel intensity) correlated strongly with those predicted by the MBW model fits (r=0.93,0.88 respectively). There was also good agreement between predicted and measured MRI indices (mean bias ± limits of agreement: I1/3:-0.003±0.118 and ICV:-0.004±0.298). Fitted model parameters were robust to truncation of MBW data. CONCLUSION: We have shown that the ventilation distribution in the lung can be inferred from an MBW signal, and verified this using ventilation MRI. The Bayesian method employed extracts this information with fewer breath cycles than required for LCI, reducing acquisition time required, and gives uncertainty bounds, which are important for clinical decision making.
Assuntos
Fibrose Cística , Teorema de Bayes , Testes Respiratórios/métodos , Fibrose Cística/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Testes de Função Respiratória/métodosRESUMO
BACKGROUND: The relative involvement of the large and small airways in asthma is not clear. Hyperpolarized gas magnetic resonance imaging (MRI) provides high-resolution 3-dimensional images of ventilation distribution that can be quantified by the ventilated volume percentage (VV%) of the lungs. OBJECTIVE: Our aims were to (1) quantify the baseline reproducibility of VV%, (2) assess the ventilation distribution between the proximal and peripheral lungs, and (3) investigate regional ventilation response to bronchodilator inhalation in a cohort of patients with asthma. METHODS: A total of 33 patients with poorly controlled, moderate-to-severe asthma were scanned with hyperpolarized 3He MRI. Two image data sets were acquired at baseline, and 1 image data set was acquired after bronchodilator inhalation. Images were divided into proximal and peripheral regions for analysis. RESULTS: Bland-Altman analysis showed strong reproducibility of VV% (bias = 0.12%; LOA = -1.86% to 2.10%). VV% variation at baseline was greater in the periphery than in the proximal lung. The proximal lung was better ventilated than the peripheral lung. Ventilation increased significantly in response to bronchodilator inhalation, globally and regionally, and the ventilation increase in response to bronchodilator inhalation was greater in the peripheral lung than in the proximal lung. Hyperpolarized gas MRI was more sensitive to changes in response to bronchodilator inhalation (58%) than spirometry (33%). CONCLUSION: The peripheral lung showed reduced ventilation and a greater response to bronchodilator inhalation than the proximal lung. The high level of baseline reproducibility and sensitivity of hyperpolarized gas MRI to bronchodilator reversibility suggests that it is suitable for low subject number studies of therapy response.
Assuntos
Asma/fisiopatologia , Ventilação Pulmonar , Administração por Inalação , Asma/diagnóstico , Asma/tratamento farmacológico , Broncodilatadores/administração & dosagem , Broncodilatadores/uso terapêutico , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Testes de Função Respiratória , Índice de Gravidade de Doença , Espirometria/métodos , Resultado do TratamentoRESUMO
PURPOSE: To develop and assess a method for acquiring coregistered proton anatomical and hyperpolarized 129 Xe ventilation MR images of the lungs with compressed sensing (CS) in a single breath hold. METHODS: Retrospective CS simulations were performed on fully sampled ventilation images acquired from one healthy smoker to optimize reconstruction parameters. Prospective same-breath anatomical and ventilation images were also acquired in five ex-smokers with an acceleration factor of 3 for hyperpolarized 129 Xe images, and were compared to fully sampled images acquired during the same session. The following metrics were used to assess data fidelity: mean absolute error (MAE), root mean square error, and linear regression of the signal intensity between fully sampled and undersampled images. The effect of CS reconstruction on two quantitative imaging metrics routinely reported [percentage ventilated volume (%VV) and heterogeneity score] was also investigated. RESULTS: Retrospective simulations showed good agreement between fully sampled and CS-reconstructed (acceleration factor of 3) images with MAE (root mean square error) of 3.9% (4.5%). The prospective same-breath images showed a good match in ventilation distribution with an average R2 of 0.76 from signal intensity linear regression and a negligible systematic bias of +0.1% in %VV calculation. A bias of -1.8% in the heterogeneity score was obtained. CONCLUSION: With CS, high-quality 3D images of hyperpolarized 129 Xe ventilation (resolution 4.2 × 4.2 × 7.5 mm3 ) can be acquired with coregistered 1 H anatomical MRI in a 15-s breath hold. The accelerated acquisition time dispenses with the need for registration between separate breath-hold 129 Xe and 1 H MRI, enabling more accurate %VV calculation.
Assuntos
Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Suspensão da Respiração , Humanos , Pulmão/fisiologia , Masculino , Técnicas de Imagem de Sincronização Respiratória , Fumantes , Isótopos de Xenônio/administração & dosagemRESUMO
Two magnetic resonance specific ventilation imaging (SVI) techniques, namely, oxygen-enhanced proton (OE-1H) and hyperpolarized 3He (HP-3He), were compared in eight healthy supine subjects [age 32 (6) yr]. An in-house radio frequency coil array for 1H configured with the 3He transmit-receive coil in situ enabled acquisition of SVI data from two nuclei from the same slice without repositioning the subjects. After 3 × 3 voxel downsampling to account for spatial registration errors between the two SV images, the voxel-by-voxel correlation coefficient of two SV maps ranged from 0.11 to 0.63 [0.46 mean (0.17 SD); P < 0.05]. Several indexes were analyzed and compared from the tidal volume-matched SV maps: the mean of SV log-normal distribution (SVmean), the standard deviation of the distribution as a measure of SV heterogeneity (SVwidth), and the gravitational gradient (SVslope). There were no significant differences in SVmean [OE-1H: 0.28 (0.08) and HP-3He: 0.32 (0.14)], SVwidths [OE-1H: 0.28 (0.08) and HP-3He: 0.27 (0.10)], and SVslopes [OE-1H: -0.016 (0.006) cm-1 and HP-3He: -0.013 (0.007) cm-1]. Despite the statistical similarities of the population averages, Bland-Altman analysis demonstrated large individual intertechnique variability. SDs of differences in these indexes were 42% (SVmean), 46% (SVwidths), and 62% (SVslopes) of their corresponding overall mean values. The present study showed that two independent, spatially coregistered, SVI techniques presented a moderate positive voxel-by-voxel correlation. Population averages of SVmean, SVwidth, and SVslope were in close agreement. However, the lack of agreement when the data sets were analyzed individually might indicate some fundamental mechanistic differences between the techniques. NEW & NOTEWORTHY To the best of our knowledge, this is the first cross-comparison of two different specific ventilation (SV) MRI techniques in the human lung (i.e., oxygen-enhanced proton and hyperpolarized 3He). The present study showed that two types of spatially coregistered SV images presented a modest positive correlation. The two techniques also yielded similar population averages of SV indexes such as log-normal mean, SV heterogeneity, and the gravitational slope, albeit with some intersubject variability.
Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Respiração , Adulto , Feminino , Voluntários Saudáveis , Humanos , Pulmão/fisiologia , Masculino , Adulto JovemRESUMO
BACKGROUND: To support translational lung MRI research with hyperpolarized 129 Xe gas, comprehensive evaluation of derived quantitative lung function measures against established measures from 3 He MRI is required. Few comparative studies have been performed to date, only at 3T, and multisession repeatability of 129 Xe functional metrics have not been reported. PURPOSE/HYPOTHESIS: To compare hyperpolarized 129 Xe and 3 He MRI-derived quantitative metrics of lung ventilation and microstructure, and their repeatability, at 1.5T. STUDY TYPE: Retrospective. POPULATION: Fourteen healthy nonsmokers (HN), five exsmokers (ES), five patients with chronic obstructive pulmonary disease (COPD), and 16 patients with nonsmall-cell lung cancer (NSCLC). FIELD STRENGTH/SEQUENCE: 1.5T. NSCLC, COPD patients and selected HN subjects underwent 3D balanced steady-state free-precession lung ventilation MRI using both 3 He and 129 Xe. Selected HN, all ES, and COPD patients underwent 2D multislice spoiled gradient-echo diffusion-weighted lung MRI using both hyperpolarized gas nuclei. ASSESSMENT: Ventilated volume percentages (VV%) and mean apparent diffusion coefficients (ADC) were derived from imaging. COPD patients performed the whole MR protocol in four separate scan sessions to assess repeatability. Same-day pulmonary function tests were performed. STATISTICAL TESTS: Intermetric correlations: Spearman's coefficient. Intergroup/internuclei differences: analysis of variance / Wilcoxon's signed rank. Repeatability: coefficient of variation (CV), intraclass correlation (ICC) coefficient. RESULTS: A significant positive correlation between 3 He and 129 Xe VV% was observed (r = 0.860, P < 0.001). VV% was larger for 3 He than 129 Xe (P = 0.001); average bias, 8.79%. A strong correlation between mean 3 He and 129 Xe ADC was obtained (r = 0.922, P < 0.001). MR parameters exhibited good correlations with pulmonary function tests. In COPD patients, mean CV of 3 He and 129 Xe VV% was 4.08% and 13.01%, respectively, with ICC coefficients of 0.541 (P = 0.061) and 0.458 (P = 0.095). Mean 3 He and 129 Xe ADC values were highly repeatable (mean CV: 2.98%, 2.77%, respectively; ICC: 0.995, P < 0.001; 0.936, P < 0.001). DATA CONCLUSION: 129 Xe lung MRI provides near-equivalent information to 3 He for quantitative lung ventilation and microstructural MRI at 1.5T. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2018.
RESUMO
PURPOSE: To develop an image-processing pipeline for semiautomated (SA) and reproducible analysis of hyperpolarized gas lung ventilation and proton anatomical magnetic resonance imaging (MRI) scan pairs. To compare results from the software for total lung volume (TLV), ventilated volume (VV), and percentage lung ventilated volume (%VV) calculation to the current manual "basic" method and a K-means segmentation method. MATERIALS AND METHODS: Six patients were imaged with hyperpolarized 3 He and same-breath lung 1 H MRI at 1.5T and six other patients were scanned with hyperpolarized 129 Xe and separate-breath 1 H MRI. One expert observer and two users with experience in lung image segmentation carried out the image analysis. Spearman (R), Intraclass (ICC) correlations, Bland-Altman limits of agreement (LOA), and Dice Similarity Coefficients (DSC) between output lung volumes were calculated. RESULTS: When comparing values of %VV, agreement between observers improved using the SA method (mean; R = 0.984, ICC = 0.980, LOA = 7.5%) when compared to the basic method (mean; R = 0.863, ICC = 0.873, LOA = 14.2%) nonsignificantly (pR = 0.25, pICC = 0.25, and pLOA = 0.50 respectively). DSC of VV and TLV masks significantly improved (P < 0.01) using the SA method (mean; DSCVV = 0.973, DSCTLV = 0.980) when compared to the basic method (mean; DSCVV = 0.947, DSCTLV = 0.957). K-means systematically overestimated %VV when compared to both basic (mean overestimation = 5.0%) and SA methods (mean overestimation = 9.7%), and had poor agreement with the other methods (mean ICC; K-means vs. basic = 0.685, K-means vs. SA = 0.740). CONCLUSION: A semiautomated image processing software was developed that improves interobserver agreement and correlation of lung ventilation volume percentage when compared to the currently used basic method and provides more consistent segmentations than the K-means method. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:640-646.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pneumopatias/diagnóstico por imagem , Pneumopatias/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Algoritmos , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Medidas de Volume Pulmonar , Masculino , Pessoa de Meia-Idade , Prótons , Reprodutibilidade dos Testes , Adulto JovemRESUMO
INTRODUCTION: Lung Clearance Index (LCI) is recognised as an early marker of cystic fibrosis (CF) lung disease. The effect of posture on LCI however is important when considering longitudinal measurements from infancy and when comparing LCI to imaging studies. METHODS: 35 children with CF and 28 healthy controls (HC) were assessed. Multiple breath washout (MBW) was performed both sitting and supine in triplicate and analysed for LCI, Scond, Sacin, and lung volumes. These values were also corrected for the Fowler dead-space to create 'alveolar' indices. RESULTS: From sitting to supine there was a significant increase in LCI and a significant decrease in FRC for both CF and HC (p<0.01). LCI, when adjusted to estimate 'alveolar' LCI (LCIalv), increased the magnitude of change with posture for both LCIalv and FRCalv in both groups, with a greater effect of change in lung volume in HC compared with children with CF. The % change in LCIalv for all subjects correlated significantly with lung volume % changes, most notably tidal volume/functional residual capacity (Vtalv/FRCalv (r = 0.54,p<0.001)). CONCLUSION: There is a significant increase in LCI from sitting to supine, which we believe to be in part due to changes in lung volume and also increasing ventilation heterogeneity related to posture. This may have implications in longitudinal measurements from infancy to older childhood and for studies comparing supine imaging methods to LCI.
Assuntos
Fibrose Cística/patologia , Fibrose Cística/fisiopatologia , Pulmão/patologia , Pulmão/fisiopatologia , Ventilação Pulmonar , Decúbito Dorsal , Estudos de Casos e Controles , Criança , Feminino , Capacidade Residual Funcional , Humanos , Masculino , Tamanho do Órgão , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologiaRESUMO
Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 (3He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 µg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔRnet) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔRnet showed significant correlation (P < .01) with changes in forced expiratory volume in 1 second (r = 0.70), forced vital capacity (r = 0.84), and %VV (r = 0.56). A significant (P < .01) positive treatment effect was detected with all metrics; however, ΔRnet showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. © RSNA, 2017 Online supplemental material is available for this article.
Assuntos
Hélio/uso terapêutico , Medidas de Volume Pulmonar/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Albuterol/uso terapêutico , Algoritmos , Asma/diagnóstico por imagem , Asma/tratamento farmacológico , Biomarcadores , Broncodilatadores/uso terapêutico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto JovemRESUMO
Hyperpolarised 3He ventilation-MRI, anatomical lung MRI, lung clearance index (LCI), low-dose CT and spirometry were performed on 19 children (6-16â years) with clinically stable mild cystic fibrosis (CF) (FEV1>-1.96), and 10 controls. All controls had normal spirometry, MRI and LCI. Ventilation-MRI was the most sensitive method of detecting abnormalities, present in 89% of patients with CF, compared with CT abnormalities in 68%, LCI 47% and conventional MRI 22%. Ventilation defects were present in the absence of CT abnormalities and in patients with normal physiology, including LCI. Ventilation-MRI is thus feasible in young children, highly sensitive and provides additional information about lung structure-function relationships.
Assuntos
Fibrose Cística/diagnóstico , Diagnóstico Precoce , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Respiração Artificial/métodos , Adolescente , Criança , Fibrose Cística/fisiopatologia , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Pulmão/diagnóstico por imagem , Masculino , Espirometria/métodos , Tomografia Computadorizada por Raios XRESUMO
PURPOSE: To compare quantitative fractional ventilation measurements from multiple breath washout imaging (MBW-I) using hyperpolarized 3 He with both spoiled gradient echo (SPGR) and balanced steady-state free precession (bSSFP) three-dimensional (3D) pulse sequences and to evaluate the feasibility of MBW-I with hyperpolarized 129 Xe. METHODS: Seven healthy subjects were scanned using 3 He MBW-I with 3D SPGR and bSSFP sequences. Five also underwent MBW-I with 129 Xe. A dual-tuned coil was used to acquire MBW-I data from both nuclei in the same subject position, enabling direct comparison of regional information. RESULTS: High-quality MBW images were obtained with bSSFP sequences using a reduced dose (100 mL) of inhaled hyperpolarized 3 He. 3D MBW-I with 129 Xe was also successfully demonstrated with a bSSFP sequence. Regional quantitative ventilation measures derived from 3 He and 129 Xe MBW-I correlated well in all subjects (P < 0.001) with mean Pearson's correlation coefficients of r = 0.61 and r = 0.52 for 3 He SPGR-bSSFP and 129 Xe-3 He (bSSFP) comparisons. The average intersubject mean difference (and standard deviation) in fractional ventilation in SPGR-bSSFP and 129 Xe-3 He comparisons was 15% (28%) and 9% (38%), respectively. CONCLUSIONS: Improved sensitivity in MBW-I can be achieved with polarization-efficient bSSFP sequences. Same scan-session 3D MBW-I with 3 He and 129 Xe has been demonstrated using a dual-tuned coil. Magn Reson Med 77:2288-2295, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Assuntos
Hélio/farmacocinética , Isótopos/farmacocinética , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Imageamento por Ressonância Magnética/métodos , Troca Gasosa Pulmonar/fisiologia , Isótopos de Xenônio/farmacocinética , Administração por Inalação , Adulto , Feminino , Humanos , Masculino , Taxa de Depuração Metabólica , Compostos Radiofarmacêuticos/farmacocinética , Mecânica Respiratória , Processamento de Sinais Assistido por Computador , Adulto JovemRESUMO
PURPOSE: To evaluate the reproducibility of indices of lung microstructure and function derived from 129 Xe chemical shift saturation recovery (CSSR) spectroscopy in healthy volunteers and patients with chronic obstructive pulmonary disease (COPD), and to study the sensitivity of CSSR-derived parameters to pulse sequence design and lung inflation level. METHODS: Preliminary data were collected from five volunteers on three occasions, using two implementations of the CSSR sequence. Separately, three volunteers each underwent CSSR at three different lung inflation levels. After analysis of these preliminary data, five COPD patients were scanned on three separate days, and nine age-matched volunteers were scanned three times on one day, to assess reproducibility. RESULTS: CSSR-derived alveolar septal thickness (ST) and surface-area-to-volume (S/V) ratio values decreased with lung inflation level (P < 0.001; P = 0.057, respectively). Intra-subject standard deviations of ST were lower than the previously measured differences between volunteers and subjects with interstitial lung disease. The mean coefficient of variation (CV) values of ST were 3.9 ± 1.9% and 6.0 ± 4.5% in volunteers and COPD patients, respectively, similar to CV values for whole-lung carbon monoxide diffusing capacity. The mean CV of S/V in volunteers and patients was 14.1 ± 8.0% and 18.0 ± 19.3%, respectively. CONCLUSION: 129 Xe CSSR presents a reproducible method for estimation of alveolar septal thickness. Magn Reson Med 77:2107-2113, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Assuntos
Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Troca Gasosa Pulmonar/fisiologia , Isótopos de Xenônio/farmacocinética , Administração por Inalação , Adulto , Idoso , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Isótopos de Xenônio/administração & dosagemRESUMO
PURPOSE: To compare lobar lung ventilation computed from expiratory and inspiratory computed tomographic (CT) data with direct measurements of ventilation at hyperpolarized helium 3 ((3)He) magnetic resonance (MR) imaging by using same-breath hydrogen 1 ((1)H) MR imaging examinations to coregister the multimodality images. MATERIALS AND METHODS: The study was approved by the national research ethics committee, and written patient consent was obtained. Thirty patients with asthma underwent breath-hold CT at total lung capacity and functional residual capacity. (3)He and (1)H MR images were acquired during the same breath hold at a lung volume of functional residual capacity plus 1 L. Lobar segmentations delineated by major fissures on both CT scans were used to calculate the percentage of ventilation per lobe from the change in inspiratory and expiratory lobar volumes. CT-based ventilation was compared with (3)He MR imaging ventilation by using diffeomorphic image registration of (1)H MR imaging to CT, which enabled indirect registration of (3)He MR imaging to CT. Statistical analysis was performed by using the Wilcoxon signed-rank test, Pearson correlation coefficient, and Bland-Altman analysis. RESULTS: The mean ± standard deviation absolute difference between the CT and (3)He MR imaging percentage of ventilation volume in all lobes was 4.0% (right upper and right middle lobes, 5.4% ± 3.3; right lower lobe, 3.7% ± 3.9; left upper lobe, 2.8% ± 2.7; left lower lobe, 3.9% ± 2.6; Wilcoxon signed-rank test, P < .05). The Pearson correlation coefficient between the two techniques in all lobes was 0.65 (P < .001). Greater percentage of ventilation was seen in the upper lobes with (3)He MR imaging and in the lower lobes with CT. This was confirmed with Bland-Altman analysis, with 95% limits of agreement for right upper and middle lobes, -2.4, 12.7; right lower lobe, -11.7, 4.6; left upper lobe, -4.9, 8.7; and left lower lobe, -9.8, 2.8. CONCLUSION: The percentage of regional ventilation per lobe calculated at CT was comparable to a direct measurement of lung ventilation at hyperpolarized (3)He MR imaging. This work provides evidence for the validity of the CT model, and same-breath (1)H MR imaging enables regional interpretation of (3)He ventilation MR imaging on the underlying lung anatomy at thin-section CT.
Assuntos
Asma/fisiopatologia , Eosinofilia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Feminino , Hélio , Humanos , Medidas de Volume Pulmonar , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Escarro/citologiaRESUMO
Multiple-breath washout hyperpolarized (3)He MRI was used to calculate regional parametric images of fractional ventilation (r) as the ratio of fresh gas entering a volume unit to the total end inspiratory volume of the unit. Using a single dose of inhaled hyperpolarized gas and a total acquisition time of under 1 min, gas washout was measured by dynamic acquisitions during successive breaths with a fixed delay. A two-dimensional (2D) imaging protocol was investigated in four healthy subjects in the supine position, and in a second protocol the capability of extending the washout imaging to a three-dimensional (3D) acquisition covering the whole lungs was tested. During both protocols, subjects were breathing comfortably, only restricted by synchronization of breathing to the sequence timings. The 3D protocol was also successfully tested on one patient with cystic fibrosis. Mean r values from each volunteer were compared with global gas volume turnover, as calculated from flow measurement at the mouth divided by total lung volume (from MRI images), and a significant correlation (r = 0.74, P < 0.05) was found. The effects of gravity on R were investigated, and an average decrease in r of 5.5%/cm (Δr = 0.016 ± 0.006 cm(-1)) from posterior to anterior was found in the right lung. Intersubject reproducibility of r imaging with the 2D and 3D protocol was tested, and a significant correlation between repeated experiments was found in a pixel-by-pixel comparison. The proposed methods can be used to measure r on a regional basis.