Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Dalton Trans ; 53(22): 9262-9266, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776119

RESUMO

First-of-a-kind temperature-controlled electron pulse radiolysis experiments facilitated the radiation-induced formation of Am(IV) in concentrated (6.0 M) HNO3, and enabled the derivation of Arrhenius and Eyring activation parameters for instigating the radical reaction between NO3˙ and Am(III).

2.
Inorg Chem ; 63(20): 9237-9244, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38722713

RESUMO

Mixed-donor ligands, such as those containing a combination of O/N or O/S, have been studied extensively for the selective extraction of trivalent actinides, especially Am3+ and Cm3+, from lanthanides during the recycling of used nuclear fuel. Oxygen/sulfur donor ligand combinations also result from the hydrolytic and/or radiolytic degradation of dithiophosphates, such as the Cyanex class of extractants, which are initially converted to monothiophosphates. To understand potential differences between the binding of such degraded ligands to Nd3+ and Am3+, the monothiophosphate complexes [M(OPS(OEt)2)5(H2O)2]2- (M3+ = Nd3+, Am3+) were prepared and characterized by single-crystal X-ray diffraction and optical spectroscopy and studied as a function of pressure up to ca. 14 GPa using diamond-anvil techniques. Although Nd3+ and Am3+ have nearly identical eight-coordinated ionic radii, these structures reveal that while the M-O bond distances in these complexes are almost equal, the M-S distances are statistically different. Moreover, for [Nd(OPS(OEt)2)5(H2O)2]2-, the hypersensitive 4I9/2 → 4G5/2 transition shifts as a function of pressure by -11 cm-1/GPa. Whereas for [Am(OPS(OEt)2)5(H2O)2]2-, the 7F0 → 7F6 transition shows a slightly stronger pressure dependence with a shift of -13 cm-1/GPa and also exhibits broadening of the 5f → 5f transitions at high pressures. These data likely indicate an increased involvement of the 5f orbitals in bonding with Am3+ relative to that of Nd3+ in these complexes.

3.
Inorg Chem ; 63(18): 8092-8098, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38657081

RESUMO

Careful manipulation of the plutonium oxidation states is essential in the study and utilization of its rich redox chemistry. To achieve this level of control, a comprehensive mechanistic understanding of radiation-induced plutonium redox chemistry is critical due to the unavoidable exposure of plutonium to ionizing radiation fields, both inherent and from in-process applications. To this end, we have developed an experimentally evaluated multiscale computer model for the prediction of gamma radiation-induced Pu(IV) redox chemistry in concentrated nitric acid solutions (1.0, 3.0, and 6.0 M). Under these acidic, aqueous solution conditions, cobalt-60 gamma irradiation afforded marginal net conversion of Pu(IV) to Pu(VI), the extent of which was dependent on the concentration of HNO3 and absorbed gamma dose. Multiscale calculations, which are in excellent agreement with experimental data, indicate that this observation is due to a combination of inherent plutonium disproportionation reactions and several radiation-induced processes, including redox cycling between Pu(IV) and Pu(III), as achieved by the reduction of Pu(IV) by nitrous acid and hydrogen peroxide, the oxidation of Pu(III) by nitrate and hydroxyl radicals, and the sequential oxidation of Pu(IV) to Pu(V) and Pu(VI) by the remaining available yield of nitrate radicals.

5.
Dalton Trans ; 53(16): 6881-6891, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38407412

RESUMO

A systematic study of the impact on the chemical reactivity of the oxidising n-dodecane radical cation (RH˙+) with f-element complexed 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) has been undertaken utilizing time-resolved electron pulse radiolysis/transient absorption spectroscopy and high-level quantum mechanical calculations. Lanthanide ion complexed species, [Ln((HEH[EHP])2)3], exhibited vastly increased reactivity (over 10× faster) in comparison to the non-complexed ligand in n-dodecane solvent, whose rate coefficient was k = (4.66 ± 0.22) × 109 M-1 s-1. Similar reactivity enhancement was also observed for the corresponding americium ion complex, k = (5.58 ± 0.30) × 1010 M-1 s-1. The vastly increased reactivity of these f-element complexes was not due to simple increased diffusion-control of these reactions; rather, enhanced hole transfer mechanisms for the complexes were calculated to become energetically more favourable. Interestingly, the observed reactivity trend with lanthanide ion size was not linear; instead, the rate coefficients showed an initial increase (Lu to Yb) followed by a decrease (Tm to Ho), followed by another increase (Dy to La). This behaviour was excellently predicted by the calculated reaction volumes of these complexes. Complementary cobalt-60 gamma irradiations for select lanthanide complexes demonstrated that the measured kinetic differences translated to increased ligand degradation at steady-state timescales, affording ∼38% increase in ligand loss of a 1 : 1 [La((HEH[EHP])2)3] : HEH[EHP] ratio system.

6.
J Phys Chem A ; 128(3): 590-598, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215218

RESUMO

Despite the availability of transuranic elements increasing in recent years, our understanding of their most basic and inherent radiation chemistry is limited and yet essential for the accurate interpretation of their physical and chemical properties. Here, we explore the transient interactions between trivalent californium ions (Cf3+) and select inorganic radicals arising from the radiolytic decomposition of common anions and functional group constituents, specifically the dichlorine (Cl2•-) and sulfate (SO4•-) radical anions. Chemical kinetics, as measured using integrated electron pulse radiolysis and transient absorption spectroscopy techniques, are presented for the reactions of these two oxidizing radicals with Cf3+ ions. The derived and ionic strength-corrected second-order rate coefficients (k) for these radiation-induced processes are k(Cf3+ + Cl2•-) = (8.28 ± 0.61) × 105 M-1 s-1 and k(Cf3+ + SO4•-) = (9.50 ± 0.43) × 108 M-1 s-1 under ambient temperature conditions (22 ± 1 °C).

7.
Phys Chem Chem Phys ; 26(5): 4039-4046, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38224090

RESUMO

Technetium is a problematic radioisotope for used nuclear fuel (UNF) and subsequent waste management owing to its high environmental mobility and coextraction in reprocessing technologies as the pertechnetate anion (TcO4-). Consequently, several strategies are under development to control the transport of this radioisotope. A proposed approach is to use diaminoguanidine (DAG) for TcO4- and transuranic ion redox control. Although the initial DAG molecule is ultimately consumed in the redox process, its susceptibility to radiolysis is currently unknown under envisioned UNF reprocessing conditions, which is a critical knowledge gap for evaluating its overall suitability for this role. To this end, we report the impacts of steady-state gamma irradiation on the rate of DAG radiolysis in water, aqueous 2.0 M nitric acid (HNO3), and in a biphasic solvent system composed of aqueous 2.0 M HNO3 in contact with 1.5 M N,N-di-(2-ethylhexyl)isobutyramide (DEHiBA) dissolved in n-dodecane. Additionally, we report chemical kinetics for the reaction of DAG with key transients arising from electron pulse radiolysis, specifically the hydrated electron (eaq-), hydrogen atom (H˙), and hydroxyl (˙OH) and nitrate (NO3˙) radicals. The DAG molecule exhibited significant reactivity with the ˙OH and NO3˙ radicals, indicating that oxidation would be the predominant degradation pathway in radiation environments. This is consistent with its role as a reducing agent. Steady-state gamma irradiations demonstrated that DAG is readily degraded within a few hundred kilogray, the rate of which was found to increase upon going from water to HNO3 containing solutions and solvents systems. This was attributed to a thermal reaction between DAG and the predominant HNO3 radiolysis product, nitrous acid (HNO2), k(DAG + HNO2) = 5480 ± 85 M-1 s-1. Although no evidence was found for the radiolysis of DAG altering the radiation chemistry of the contacted DEHiBA/n-dodecane phase in the investigated biphasic system, the utility of DAG as a redox control reagent will likely be limited by significant competition with its degradation by HNO2.

8.
Phys Chem Chem Phys ; 25(48): 32948-32954, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019140

RESUMO

Chromium ions can make their way into the primary coolant of nuclear power reactors from the corrosion of stainless-steel reactor components, decreasing the material's corrosion resistance and resulting in increased transport of further corrosion products. Despite these potential effects, the radiation-induced redox speciation of chromium ions in aqueous solution is not well understood, especially at the elevated temperatures experienced by reactor coolants. In the present work, we report new experimental results demonstrating that in aerated aqueous solution, the radiolytic oxidation of Cr(III) to Cr(VI) occurs at pH 4, while the reduction of Cr(VI) to Cr(III) occurs at pH 2. The oxidation of Cr(III) is primarily attributed to the reaction of the hydroxyl radical (˙OH) with the Cr(OH)2+ species, while the reduction of Cr(VI) is attributed to reactions involving the hydrated electron (eaq-) and hydrogen atom (H˙). Additionally, the steady-state equilibrium yield of Cr(VI) from the gamma irradiation of pH 4 Cr(III) solutions decreased with increasing temperature (over a range of 37-195 °C). This observation indicates that the activation energy of the Cr(VI) reduction reactions is higher than that for the Cr(III) oxidation reactions, such that it becomes relatively more favorable at higher temperatures. Overall, these data are important for the development of complementary multiscale models for the prediction of metal ion speciation in high temperature radiation environments.

9.
Inorg Chem ; 62(32): 12905-12912, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37523261

RESUMO

N,N,N',N'-tetramethyl diglycolamide (TMDGA), a methylated variant of the diglycolamide extractants being proposed as curium holdback reagents in advanced used nuclear fuel reprocessing technologies, has been crystallized with plutonium, a transuranic actinide that has multiple accessible oxidation states. Two plutonium TMDGA complexes, [PuIII(TMDGA)3][PuIII(NO3)6] and[PuIV(TMDGA)3][PuIV(NO3)6]2·0.75MeOH, were crystallized through solvent diffusion of a reaction mixture containing plutonium(III) nitrate and TMDGA. The sample was then partially oxidized by air to yield [PuIV(TMDGA)3][PuIV(NO3)6]2·0.75MeOH. Single-crystal X-ray diffraction reveals that the multinuclear systems crystallize with hexanitrato anionic species, providing insight into the first solid-state isolation of the elusive trivalent plutonium hexanitrato species. Crystallography data show a change in geometry around the TMDGA metal center from Pu3+ to Pu4+, with the symmetry increasing approximately from C4v to D3h. These complexes provide a rare opportunity to investigate the bond metrics of plutonium in two different oxidation states with similar coordination environments. Further, these new structures provide insight into the potential chemical and structural differences arising from the radiation-induced formation of transient tetravalent curium oxidation states in used nuclear fuel reprocessing streams.

10.
Phys Chem Chem Phys ; 25(23): 16009-16017, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272071

RESUMO

The fate of fission-product iodine is critical for the deployment of next generation molten salt reactor technologies, owing to its volatility and biological impacts if it were to be released into the environment. To date, little is known on how ionizing radiation fields influence the redox chemistry, speciation, and transport of iodine in high temperature molten salts. Here we employ picosecond electron pulse irradiation techniques to elucidate for the first time the impact of iodide ions (I-) on the speciation and chemical kinetics of the primary radiation-induced transient radicals generated in molten chloride salt mixtures (eS- and Cl2˙-) as a function of temperature (400-700 °C). In the presence of I- ions (≥ 1 wt% KI in LiCl-KCl eutectic), we find that the transient spectrum following the electron pulse is composed of at least three overlapping species: the eS- and the Cl2˙- and ICl˙- radical anions, for which a deconvoluted spectrum of the latter is reported here for the first time in molten salts. This new transient spectrum was consistent with gas phase density functional theory calculations. The lifetime of the eS- was unaffected by the addition of I- ions. The newly observed interhalogen radical anion, ICl˙-, exhibited a lifetime on the order of microseconds over the investigated temperature range. The associated chemical kinetics indicate that the predominate mechanism of ICl˙- decay is via reaction with the Cl2˙- radical anion. The iodine containing product of this reaction is expected to be ICl2-, which will have implications for the transport of fission-product iodine in MSR technologies.

11.
Phys Chem Chem Phys ; 25(24): 16404-16413, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294439

RESUMO

The impact of trivalent lanthanide ion complexation and temperature on the chemical reactivity of N,N,N',N'-tetraoctyl diglycolamide (TODGA) with the n-dodecane radical cation (RH˙+) has been measured by electron pulse radiolysis and evaluated by quantum mechanical calculations. Additionally, Arrhenius parameters were determined for the reaction of the non-complexed TODGA ligand with the RH˙+ from 10-40 °C, giving the activation energy (Ea = 17.43 ± 1.64 kJ mol-1) and pre-exponential factor (A = (2.36 ± 0.05) × 1013 M-1 s-1). The complexation of Nd(III), Gd(III), and Yb(III) ions by TODGA yielded [LnIII(TODGA)3(NO3)3] complexes that exhibited significantly increased reactivity (up to 9.3× faster) with the RH˙+, relative to the non-complexed ligand: k([LnIII(TODGA)3(NO3)3] + RH˙+) = (8.99 ± 0.93) × 1010, (2.88 ± 0.40) × 1010, and (1.53 ± 0.34) × 1010 M-1 s-1, for Nd(III), Gd(III), and Yb(III) ions, respectively. The rate coefficient enhancement measured for these complexes exhibited a dependence on atomic number, decreasing as the lanthanide series was traversed. Preliminary reaction free energy calculations-based on a model [LnIII(TOGDA)]3+ complex system-indicate that both electron/hole and proton transfer reactions are energetically unfavorable for complexed TODGA. Furthermore, complementary average local ionization energy calculations showed that the most reactive region of model N,N,N',N'-tetraethyl diglycolamide (TEDGA) complexes, [LnIII(TEGDA)3(NO3)3], toward electrophilic attack is for the coordinated nitrate (NO3-) counter anions. Therefore, it is possible that radical reactions with the complexed NO3- counter anions dominate the differences in rates seen for the [LnIII(TODGA)3(NO3)3] complexes, and are likely responsible for the reported radioprotection in the presence of TODGA complexes.

12.
J Phys Chem B ; 127(17): 3931-3938, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37084416

RESUMO

The octadentate hydroxypyridinone ligand 3,4,3-LI(1,2-HOPO) (abbreviated as HOPO) has been identified as a promising candidate for both chelation and f-element separation technologies, two applications that require optimal performance in radiation environments. However, the radiation robustness of HOPO is currently unknown. Here, we employ a combination of time-resolved (electron pulse) and steady-state (alpha self-radiolysis) irradiation techniques to elucidate the basic chemistry of HOPO and its f-element complexes in aqueous radiation environments. Chemical kinetics were measured for the reaction of HOPO and its Nd(III) ion complex ([NdIII(HOPO)]-) with key aqueous radiation-induced radical transients (eaq-, H• atom, and •OH and NO3• radicals). The reaction of HOPO with the eaq- is believed to proceed via reduction of the hydroxypyridinone moiety, while transient adduct spectra indicate that reactions with the H• atom and •OH and NO3• radicals proceeded by addition to HOPO's hydroxypyridinone rings, potentially allowing for the generation of an extensive suite of addition products. Complementary steady-state 241Am(III)-HOPO complex ([241AmIII(HOPO)]-) irradiations showed the gradual release of 241Am(III) ions with increasing alpha dose up to 100 kGy, although complete ligand destruction was not observed.

13.
Chemphyschem ; 24(5): e202200749, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470592

RESUMO

Acetohydroxamic acid (AHA) has been proposed for inclusion in advanced, single-cycle, used nuclear fuel reprocessing solvent systems for the reduction and complexation of plutonium and neptunium ions. For this application, a detailed description of the fundamental degradation of AHA in dilute aqueous nitric acid is required. To this end, we present a comprehensive, multiscale computer model for the coupled radiolytic and hydrolytic degradation of AHA in aqueous sodium nitrate and nitric acid solutions. Rate coefficients for the reactions of AHA and hydroxylamine (HA) with the oxidizing nitrate radical were measured for the first time using electron pulse radiolysis and used as inputs for the kinetic model. The computer model results are validated by comparison to experimental data from steady-state gamma ray irradiations, for which the agreement is excellent. The presented model accurately predicts the yields of the major degradation products of AHA: acetic acid, HA, nitrous oxide, and molecular hydrogen.

14.
RSC Adv ; 12(46): 29757-29766, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321097

RESUMO

Acetohydroxamic acid (AHA) is a small organic acid with a wide variety of industrial, biological, and pharmacological applications. A deep fundamental molecular level understanding of the mechanisms responsible for the radical-induced reactions of AHA in these environments is necessary to predict and control their behaviour and elucidate their interplay with other attendant chemical species, for example, the oxidative degradation products of AHA. To this end, we present a comprehensive, multiscale computer model for interrogating the radical-induced degradation of AHA in acidic aqueous solutions. Model predictions were critically evaluated by a systematic experimental radiation chemistry investigation, leveraging time-resolved electron pulse irradiation techniques for the measurement of new radical reaction rate coefficients, and steady-state gamma irradiations for the identification and quantification of AHA degradation products: acetic acid, hydroxylamine, nitrous oxide, and molecular hydrogen, with formic acid and methane as minor products. Excellent agreement was achieved between calculation and experiment, indicating that this fundamental model can accurately predict the degradation pathways of AHA under irradiation in acidic aqueous solutions.

15.
Materials (Basel) ; 15(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295382

RESUMO

Corrosion of aluminium alloy clad nuclear fuel, during reactor operation and under subsequent wet storage conditions, promotes the formation of aluminium hydroxide and oxyhydroxide layers. These hydrated mineral phases and the chemisorbed and physisorbed waters on their surfaces are susceptible to radiation-induced processes that yield molecular hydrogen gas (H2), which has the potential to complicate the long-term storage and disposal of aluminium clad nuclear fuel through flammable and explosive gas mixture formation, alloy embrittlement, and pressurization. Here, we present a systematic study of the radiolytic formation of H2 from aluminium alloy 1100 (AA1100) and 6061 (AA6061) coupons in "dry" (~0% relative humidity) and "wet" (50% relative humidity) helium environments. Cobalt-60 gamma irradiation of both aluminium alloy types promoted the formation of H2, which increased linearly up to ~2 MGy, and afforded G-values of 1.1 ± 0.1 and 2.9 ± 0.1 for "dry" and "wet" AA1100, and 2.7 ± 0.1 and 1.7 ± 0.1 for "dry" and "wet" AA6061. The negative correlation of H2 production with relative humidity for AA6061 is in stark contrast to AA1100 and is attributed to differences in the extent of corrosion and varying amounts of adsorbed water in the two alloys, as characterized using optical profilometry, scanning electron microscopy, Raman spectroscopy, and X-ray diffraction techniques.

16.
Environ Pollut ; 313: 120171, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113647

RESUMO

The immense production of plastic polymers combined with their discordancy with nature has led to vast plastic waste contamination across the geosphere, from the oceans to freshwater reservoirs, wetlands, remote snowpacks, sediments, air and multiple other environments. These environmental pollutants include microplastics (MP), typically defined as small and fragmented plastics less than 5 mm in size, and nanoplastics (NP), particles smaller than a micrometer. The formation of micro and nanoplastics in aqueous media to date has been largely attributed to fragmentation of plastics by natural (i.e., abrasion, photolysis, biotic) or industrial processes. We present a novel method to create small microplastics (≲ 5 µm) and nanoplastics in water from a wide variety of plastic materials using a small volume of a solubilizer liquid, such as n-dodecane, in combination with vigorous mixing. When the suspensions or solutions are subjected to ultrasonic mixing, the particle sizes decrease. Small micro- and nanoparticles were made from commercial, real world and waste (aged) polyethylene, polystyrene, polycarbonate and polyethylene terephthalate, in addition to other plastic materials and were analyzed using dark field microscopy, Raman spectroscopy and particle size measurements. The presented method provides a new and simple way to create specific size distributions of micro- and nanoparticles, which will enable expanded research on these plastic particles in water, especially those made from real world and aged plastics. The ease of NP and small MP formation upon initial mixing simulates real world environments, thereby providing further insight into the behavior of plastics in natural settings.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos , Plásticos , Polietileno , Polietilenotereftalatos , Poliestirenos , Suspensões , Água , Poluentes Químicos da Água/análise
17.
Inorg Chem ; 61(28): 10822-10832, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35776877

RESUMO

Despite the significant impact of radiation-induced redox reactions on the accessibility and lifetimes of actinide oxidation states, fundamental knowledge of aqueous actinide metal ion radiation chemistry is limited, especially for the late actinides. A quantitative understanding of these intrinsic radiation-induced processes is essential for investigating the fundamental properties of these actinides. We present here a picosecond electron pulse reaction kinetics study into the radiation-induced redox chemistry of trivalent berkelium (Bk(III)) and californium (Cf(III)) ions in acidic aqueous solutions at ambient temperature. New and first-of-a-kind, second-order rate coefficients are reported for the transient radical-induced reduction of Bk(III) and Cf(III) by the hydrated electron (eaq-) and hydrogen atom (H•), demonstrating a significant reactivity (up to 1011 M-1 s-1) indicative of a preference of these metals to adopt divalent states. Additionally, we report the first-ever second-order rate coefficients for the transient radical-induced oxidation of these elements by a reaction with hydroxyl (•OH) and nitrate (NO3•) radicals, which also exhibited fast reactivity (ca. 108 M-1 s-1). Transient Cf(II), Cf(IV), and Bk(IV) absorption spectra are also reported. Overall, the presented data highlight the existence of rich, complex, intrinsic late actinide radiation-induced redox chemistry that has the potential to influence the findings of other areas of actinide science.

18.
Phys Chem Chem Phys ; 24(41): 25088-25098, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-35789354

RESUMO

Molten chloride salts are currently under consideration as combined coolant and liquid fuel for next-generation molten salt nuclear reactors. Unlike complementary light-water reactor technologies, the radiation science underpinning molten salts is in its infancy, and thus requires a fundamental mechanistic investigation to elucidate the radiation-driven chemistry within molten salt reactors. Here we present an electron pulse radiolysis kinetics study into the behaviour of the primary radiolytic species generated in molten chloride systems, i.e., the solvated electron (eS-) and di-chlorine radical anion (Cl2˙-). We examine the reaction of eS- with Zn2+ from 400-600 °C (Ea = 30.31 ± 0.09 kJ mol-1), and the kinetics and decay mechanisms of Cl2˙- in molten lithium chloride-potassium chloride (LiCl-KCl) eutectic. In the absence of Zn2+, the lifetime of eS- was found to be dictated by residual impurities in ostensibly "pure" salts, and thus the observed decay is dependent on sample history rather than being an intrinsic property of the salt. The decay of Cl2˙- is complex, owing to the competition of Cl2˙- disproportionation with several other chemical pathways, one of which involves reduction by radiolytically-produced Zn+ species. Overall, the reported findings demonstrate the richness and complexity of chemistry involving the interactions of ionizing radiation with molten salts.

19.
Hum Fertil (Camb) ; 25(1): 147-153, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32098536

RESUMO

Time-lapse (TL) incubators are increasingly used in in vitro fertilization (IVF) laboratories but there have been few studies of their effectiveness in comparison to other incubator types. Moreover, the design of most studies has been limited by the quality of the control incubator. We have therefore performed a one-year pseudo-randomized prospective study of IVF cycles using a TL incubator (EmbryoScope™) (n = 243) or a conventional incubator (K-System G-185 Flatbed) (n = 203). The two groups were well matched in terms of clinical parameters: IVF cycle attempt number, IVF/ICSI, age, number and day (3 or 5) of embryo transfer. Embryos were selected for transfer using conventional (non-TL) morphological grading. The EmbryoScope group had an increased chance of a live birth (43.2% vs. 34.5%; OR = 1.43 [95%CI: 0.96-2.13]) with significantly reduced early pregnancy loss (5.8% vs. 13.8%; OR = 0.37 [0.19-0.74]) compared to the K-System incubator. There was a higher proportion of 4-cell embryos on day 2 and 8-cell embryos on day 3 in the EmbryoScope, compared to the K-Systems. The use of TL incubators is appropriate in ART by virtue of their high specification, facility for low oxygen culture and provision of minimally disturbed culture conditions which limit exposure of human embryos to environmental stress.


Assuntos
Coeficiente de Natalidade , Técnicas de Cultura Embrionária , Feminino , Fertilização in vitro , Humanos , Incubadoras , Nascido Vivo , Oxigênio , Gravidez , Taxa de Gravidez , Estudos Prospectivos , Imagem com Lapso de Tempo
20.
Phys Chem Chem Phys ; 23(43): 24589-24597, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710211

RESUMO

Specialized extractant ligands - such as tri-butyl phosphate (TBP), N,N-di-(2-ethylhexyl)butyramide (DEHBA), and N,N-di-2-ethylhexylisobutryamide (DEHiBA) - have been developed for the recovery of uranium from used nuclear fuel by reprocessing solvent extraction technologies. These ligands must function in the presence of an intense multi-component radiation field, and thus it is critical that their radiolytic behaviour be thoroughly evaluated. This is especially true for their metal complexes, where there is negligible information on the influence of complexation on radiolytic reactivity, despite the prevalence of metal complexes in used nuclear fuel reprocessing solvent systems. Here we present a kinetic investigation into the effect of uranyl (UO22+) complexation on the reaction kinetics of the dodecane radical cation (RH˙+) with TBP, DEHBA, and DEHiBA. Complexation had negligible effect on the reaction of RH˙+ with TBP, for which a second-order rate coefficient (k) of (1.3 ± 0.1) × 1010 M-1 s-1 was measured. For DEHBA and DEHiBA, UO22+ complexation afforded an increase in their respective rate coefficients: k(RH˙+ + [UO2(NO3)2(DEHBA)2]) = (2.5 ± 0.1) × 1010 M-1 s-1 and k(RH˙+ + [UO2(NO3)2(DEHiBA)2]) = (1.6 ± 0.1) × 1010 M-1 s-1. This enhancement with complexation is indicative of an alternative RH˙+ reaction pathway, which is more readily accessible for [UO2(NO3)2(DEHBA)2] as it exhibited a much larger kinetic enhancement than [UO2(NO3)2(DEHiBA)2], 2.6× vs. 1.4×, respectively. Complementary quantum mechanical calculations suggests that the difference in reaction kinetic enhancement between TBP and DEHBA/DEHiBA is attributed to a combination of reaction pathway (electron/hole transfer vs. proton transfer) energetics and electron density distribution, wherein attendant nitrate counter anions effectively 'shield' TBP from RH˙+ electron transfer processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA