Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; 14(14): 2924-2934, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34021532

RESUMO

The development of Cu-based catalysts for the electrochemical CO2 reduction reaction (eCO2 RR) is of major interest for generating commercially important C2 liquid products such as ethanol. Cu is exclusive among the eCO2 RR metallic catalysts in that it facilitates the formation of a range of highly reduced C2 products, with a reasonable total faradaic efficiency but poor product selectivity. Here, a series of new sulfide-derived copper-cadmium catalysts (SD-Cux Cdy ) was developed. An excellent faradaic efficiency of around 32 % but with a relatively low current density of 0.6 mA cm-2 for ethanol was obtained using the SD-CuCd2 catalyst at the relatively low overpotential of 0.89 V in a CO2 -saturated aqueous 0.10 m KHCO3 solution with an H-cell. The current density increased by an order of magnitude under similar conditions using a flow cell where the mass transport rate for CO2 was greatly enhanced. Ex situ spectroscopic and microscopic, and voltammetric investigations pointed to the role of abundant phase boundaries between CdS and Cu+ /Cu sites in the SD-CuCd2 catalyst in enhancing the selectivity and efficiency of ethanol formation at low potentials.

2.
ACS Macro Lett ; 8(10): 1316-1322, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35651172

RESUMO

Electrochemical activation of thiocarbonylthio reversible addition-fragmentation chain transfer (RAFT) agents (S=C(Z)S-R) is explored as a potential method for initiating RAFT polymerization under mild conditions without producing initiator-derived byproducts. Herein we apply cyclic voltammetry to establish a predominant reduction mechanism, where electrochemical reduction is coupled to an irreversible first-order chemical reaction. Structure-dependent trends in cyclic voltammograms (CVs), and comparison to absorption spectra, clarify the role of R- and Z-groups in determining reduction processes. The major reduction peak moves to more cathodic potentials in the series dithiobenzoates > trithiocarbonates > heteroaromatic dithiocarbamates > xanthates ∼ N-alkyl-N-aryldithiocarbamates, due to the Z-group influence on thiocarbonyl bond reactivity. More active (electron-withdrawing, radical stabilizing) R-groups shift the reduction peak anodically, in part due to their influence on the rate of the coupled chemical reaction. Analysis of CVs across a range of scan rates revealed that kinetic control over the reduction mechanism is influenced by both the charge transfer rate and chemical reaction rate.

4.
Chemistry ; 19(52): 17733-44, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24288151

RESUMO

Two N-donor-functionalised ionic liquids (ILs), 1-ethyl-1,4-dimethylpiperazinium bis(trifluoromethylsulfonyl)amide (1) and 1-(2-dimethylaminoethyl)-dimethylethylammonium bis(trifluoromethylsulfonyl)amide (2), were synthesised and their electrochemical and transport properties measured. The data were compared with the benchmark system, N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (3). Marked differences in thermal and electrochemical stability were observed between the two tertiary-amine-functionalised salts and the non-functionalised benchmark. The former are up to 170 K and 2 V less stable than the structural counterpart lacking a tertiary amine function. The ion self-diffusion coefficients (Di ) and molar conductivities (Λ) are higher for the IL with an open-chain cation (2) than that with a cyclic cation (1), but less than that with a non-functionalised, heterocyclic cation (3). The viscosities (η) show the opposite behaviour. The Walden [Λ[proportionality](1/η)(t) ] and Stokes-Einstein [Di /T)[proportionality](1/η)(t) ] exponents, t, are very similar for the three salts, 0.93-0.98 (±0.05); that is, the self-diffusion coefficients and conductivity are set by η. The Di for 1 and 2 are the same, within experimental error, at the same viscosity, whereas Λ for 1 is approximately 13% higher than that of 2. The diffusion and molar conductivity data are consistent, with a slope of 0.98±0.05 for a plot of ln(ΛT) against ln(D+ +D- ). The Nernst-Einstein deviation parameters (Δ) are such that the mean of the two like-ion VCCs is greater than that of the unlike ions. The values of Δ are 0.31, 0.36 and 0.42 for 3, 1 and 2, respectively, as is typical for ILs, but there is some subtlety in the ion interactions given 2 has the largest value. The distinct diffusion coefficients (DDC) follow the order D(d)__ < D(d)++ < D(d)+_, as is common for [Tf2N](-) salts. The ion motions are not correlated as in an electrolyte solution: instead, there is greater anti-correlation between the velocities of a given anion and the overall ensemble of anions in comparison to those for the cationic analogue, the anti-correlation for the velocities of which is in turn greater than that for a given ion and the ensemble of oppositely charged ions, an observation that is due to the requirement for the conservation of momentum in the system. The DDC also show fractional SE behaviour with t~0.95.

5.
Phys Chem Chem Phys ; 15(20): 7470-4, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23584418

RESUMO

Aluminium electrodeposition is demonstrated from a thermally degraded ionic liquid solution. NMR and voltammetric analyses established that Al(3+) reduction was remarkably similar to that in non-degraded IL solutions suggesting that the electroactive metal-containing species was unaffected by heat treatment. Electron microscopy revealed a significant grain refinement of the deposited metal.


Assuntos
Compostos de Alumínio/química , Líquidos Iônicos/química , Temperatura , Ar , Técnicas Eletroquímicas , Galvanoplastia , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Propriedades de Superfície , Água/química
6.
Langmuir ; 28(19): 7374-81, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22515304

RESUMO

The structure of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C(4)mpyr][NTf(2)]) room-temperature ionic liquid at an electrified gold interface was studied using neutron reflectometry, cyclic voltammetry, and differential capacitance measurements. Subtle differences were observed between the reflectivity data collected on a gold electrode at three different applied potentials. Detailed analysis of the fitted reflectivity data reveals an excess of [C(4)mpyr](+) at the interface, with the amount decreasing at increasingly positive potentials. A cation rich interface was found even at a positively charged electrode, which indicates a nonelectrostatic (specific) adsorption of [C(4)mpyr](+) onto the gold electrode.

7.
J Phys Chem B ; 115(21): 6843-52, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21545156

RESUMO

Electrochemical studies in room temperature ionic liquids are often hampered by their relatively high viscosity. However, in some circumstances, fast exchange between participating electroactive species has provided beneficial enhancement of charge transport. The iodide (I¯)/iodine (I(2))/triiodide (I(3)¯) redox system that introduces exchange via the I¯ + I(2) ⇌ I(3)¯ process is a well documented example because it is used as a redox mediator in dye-sensitized solar cells. To provide enhanced understanding of ion movement in RTIL media, a combined electrochemical and NMR study of diffusion in the {SeCN¯-(SeCN)(2)-(SeCN)(3)¯} system has been undertaken in a selection of commonly used RTILs. In this system, each of the Se, C and N nuclei is NMR active. The electrochemical behavior of the pure ionic liquid, [C(4)mim][SeCN], which is synthesized and characterized here for the first time, also has been investigated. Voltammetric studies, which yield readily interpreted diffusion-limited responses under steady-state conditions by means of a Random Assembly of Microdisks (RAM) microelectrode array, have been used to measure electrochemically based diffusion coefficients, while self-diffusion coefficients were measured by pulsed field gradient NMR methods. The diffusivity data, derived from concentration and field gradients respectively, are in good agreement. The NMR data reveal that exchange processes occur between selenocyanate species, but the voltammetric data show the rates of exchange are too slow to enhance charge transfer. Thus, a comparison of the iodide and selenocyanate systems is somewhat paradoxical in that while the latter give RTILs of low viscosity, sluggish exchange kinetics prevent any significant enhancement of charge transfer through direct electron exchange. In contrast, faster exchange between iodide and its oxidation products leads to substantial electron exchange but this effect does not compensate sufficiently for mass transport limitations imposed by the higher viscosity of iodide RTILs.

8.
Chemistry ; 16(12): 3815-26, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20146270

RESUMO

This paper reports on the electrodeposition of aluminium on several substrates from the air- and water-stable ionic liquids 1-propyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)amide ([C(3)mpip][NTf(2)]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([C(4)mpyr][NTf(2)]), which contain anhydrous AlCl(3). At an AlCl(3) concentration of 0.75 molal, no evidence for aluminium electrodeposition was observed in either system at room temperature. However, aluminium electrodeposition becomes feasible upon heating the samples to 80 degrees C. Aluminium electrodeposition from bis(trifluoromethylsulfonyl)amide-based ionic liquids that contain AlCl(3) has previously been shown to be very dependent upon the AlCl(3) concentration and has not been demonstrated at AlCl(3) concentrations below 1.13 molal. The dissolution of AlCl(3) in [C(3)mpip][NTf(2)] and [C(4)mpyr][NTf(2)] was studied by variable-temperature (27)Al NMR spectroscopy to gain insights on the electroactive species responsible for aluminium electrodeposition. A similar change in the aluminium speciation with temperature was observed in both ionic liquids, thereby indicating that the chemistry was similar in both. The electrodeposition of aluminium was shown to coincide with the formation of an asymmetric four-coordinate aluminium-containing species with an (27)Al chemical shift of delta=94 and 92 ppm in the [C(3)mpip][NTf(2)]-AlCl(3) and [C(4)mpyr][NTf(2)]-AlCl(3) systems, respectively. It was concluded that the aluminium-containing species that give rise to these resonances corresponds to the electroactive species and was assigned to [AlCl(3)(NTf(2))](-).

9.
Chemistry ; 15(14): 3435-47, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19132700

RESUMO

Electrodeposition of aluminium is possible from solutions of AlCl(3) dissolved in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (C(4)mpyrNTf(2)) ionic liquid. However, electrodeposition is dependant on the AlCl(3) concentration as it only occurs at concentrations >1.6 mol L(-1). At these relatively high AlCl(3) concentrations the C(4)mpyrNTf(2)/AlCl(3) mixtures exhibit biphasic behaviour. Notably, at 1.6 mol L(-1) AlCl(3), aluminium can only be electrodeposited from the upper phase. Conversely, we found that at 3.3 mol L(-1) aluminium electrodeposition can only occur from the lower phase. The complex chemistry of the C(4)mpyrNTf(2)/AlCl(3) system is described and implications of aluminium speciation in several C(4)mpyrNTf(2)/AlCl(3) mixtures, as deduced from Raman and (27)Al NMR spectroscopic data, are discussed. The (27)Al NMR spectra of the C(4)mpyrNTf(2)/AlCl(3) mixtures revealed the presence of both tetrahedrally and octahedrally coordinated aluminium species. Raman spectroscopy revealed that the level of uncoordinated NTf(2)(-) anions decreased with increasing AlCl(3) concentration. Quantum chemical calculations using density functional and ab initio theory were employed to identify plausible aluminium-containing species and to calculate their vibrational frequencies, which in turn assisted the assignment of the observed Raman bands. The data indicate that the electroactive species involved are likely to be either [AlCl(3)(NTf(2))](-) or [AlCl(2)(NTf(2))(2)](-).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA