Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nanoscale ; 16(19): 9576-9582, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38682293

RESUMO

Aquaporin-4 (AQP4) facilitates water transport across astrocytic membranes in the brain, forming highly structured nanometric arrays. AQP4 has a central role in regulating cerebrospinal fluid (CSF) circulation and facilitating the clearance of solutes from the extracellular space of the brain. Adrenergic signaling has been shown to modulate the volume of the extracellular space of the brain via AQP4 localized at the end-feet of astrocytes, but the mechanisms by which AQP4 regulates CSF inflow and outflow in the brain remain elusive. Using advanced imaging techniques, including super-resolution microscopy and single-molecule tracking, we investigated the hypothesis that ß-adrenergic receptor activation induces cellular changes that regulate AQP4 array size and mobility, thus influencing water transport in the brain. We report that the ß-adrenergic agonist, isoproterenol hydrochloride, decreases AQP4 array size and enhances its membrane mobility, while hyperosmotic conditions induce the formation of larger, less mobile arrays. These findings reveal that AQP4 arrays are dynamic structures, responsive to adrenergic signals and osmotic changes, highlighting a novel regulatory mechanism of water transport in the brain. Our results provide insights into the molecular control of CSF circulation and extracellular brain space volume, laying the groundwork for understanding the relationship between astrocyte water transport, sleep physiology, and neurodegeneration.


Assuntos
Aquaporina 4 , Astrócitos , Isoproterenol , Imagem Individual de Molécula , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Astrócitos/citologia , Animais , Isoproterenol/farmacologia , Camundongos , Água/química , Água/metabolismo , Células Cultivadas , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Encéfalo/metabolismo
2.
Acta Neuropathol ; 147(1): 50, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443601

RESUMO

TDP-43 is an aggregation-prone protein which accumulates in the hallmark pathological inclusions of amyotrophic lateral sclerosis (ALS). However, the analysis of deeply phenotyped human post-mortem samples has shown that TDP-43 aggregation, revealed by standard antibody methods, correlates poorly with symptom manifestation. Recent identification of cryptic-splicing events, such as the detection of Stathmin-2 (STMN-2) cryptic exons, are providing evidence implicating TDP-43 loss-of-function as a potential driving pathomechanism but the temporal nature of TDP-43 loss and its relation to the disease process and clinical phenotype is not known. To address these outstanding questions, we used a novel RNA aptamer, TDP-43APT, to detect TDP-43 pathology and used single molecule in situ hybridization to sensitively reveal TDP-43 loss-of-function and applied these in a deeply phenotyped human post-mortem tissue cohort. We demonstrate that TDP-43APT identifies pathological TDP-43, detecting aggregation events that cannot be detected by classical antibody stains. We show that nuclear TDP-43 pathology is an early event, occurring prior to cytoplasmic accumulation and is associated with loss-of-function measured by coincident STMN-2 cryptic splicing pathology. Crucially, we show that these pathological features of TDP-43 loss-of-function precede the clinical inflection point and are not required for region specific clinical manifestation. Furthermore, we demonstrate that gain-of-function in the form of extensive cytoplasmic accumulation, but not loss-of-function, is the primary molecular correlate of clinical manifestation. Taken together, our findings demonstrate implications for early diagnostics as the presence of STMN-2 cryptic exons and early TDP-43 aggregation events could be detected prior to symptom onset, holding promise for early intervention in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Aptâmeros de Nucleotídeos , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , Anticorpos
3.
Sci Adv ; 9(46): eadi7359, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967183

RESUMO

Protein misfolding and aggregation is a characteristic of many neurodegenerative disorders, including Alzheimer's and Parkinson's disease. The oligomers generated during aggregation are likely involved in disease pathogenesis and present promising biomarker candidates. However, owing to their small size and low concentration, specific tools to quantify and characterize aggregates in complex biological samples are still lacking. Here, we present single-molecule two-color aggregate pulldown (STAPull), which overcomes this challenge by probing immobilized proteins using orthogonally labeled detection antibodies. By analyzing colocalized signals, we can eliminate monomeric protein and specifically quantify aggregated proteins. Using the aggregation-prone alpha-synuclein protein as a model, we demonstrate that this approach can specifically detect aggregates with a limit of detection of 5 picomolar. Furthermore, we show that STAPull can be used in a range of samples, including human biofluids. STAPull is applicable to protein aggregates from a variety of disorders and will aid in the identification of biomarkers that are crucial in the effort to diagnose these diseases.


Assuntos
Doença de Parkinson , Agregados Proteicos , Humanos , Doença de Parkinson/metabolismo
4.
Nano Lett ; 23(22): 10633-10641, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37916770

RESUMO

Fluorescence microscopy enables specific visualization of proteins in living cells and has played an important role in our understanding of the protein subcellular location and function. Some proteins, however, show altered localization or function when labeled using direct fusions to fluorescent proteins, making them difficult to study in live cells. Additionally, the resolution of fluorescence microscopy is limited to ∼200 nm, which is 2 orders of magnitude larger than the size of most proteins. To circumvent these challenges, we previously developed LIVE-PAINT, a live-cell super-resolution approach that takes advantage of short interacting peptides to transiently bind a fluorescent protein to the protein-of-interest. Here, we successfully use LIVE-PAINT to image yeast membrane proteins that do not tolerate the direct fusion of a fluorescent protein by using peptide tags as short as 5-residues. We also demonstrate that it is possible to resolve multiple proteins at the nanoscale concurrently using orthogonal peptide interaction pairs.


Assuntos
Peptídeos , Proteínas , Diagnóstico por Imagem , Saccharomyces cerevisiae , Corantes Fluorescentes/química
5.
Front Mol Neurosci ; 16: 1027898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671010

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is characterised by a loss of motor neurons in the brain and spinal cord that is preceded by early-stage changes in synapses that may be associated with TAR-DNA-Binding Protein 43 (TDP-43) pathology. Cellular inclusions of hyperphosphorylated TDP-43 (pTDP-43) are a key hallmark of neurodegenerative diseases such ALS. However, there has been little characterisation of the synaptic expression of TDP-43 inside subpopulations of spinal cord synapses. This study utilises a range of high-resolution and super-resolution microscopy techniques with immunolabelling, as well as an aptamer-based TDP-43 labelling strategy visualised with single-molecule localisation microscopy, to characterise and quantify the presence of pTDP-43 in populations of excitatory synapses near where motor neurons reside in the lateral ventral horn of the mouse lumbar spinal cord. We observe that TDP-43 is expressed in approximately half of spinal cord synapses as nanoscale clusters. Synaptic TDP-43 clusters are found most abundantly at synapses associated with VGLUT1-positive presynaptic terminals, compared to VGLUT2-associated synapses. Our nanoscopy techniques showed no difference in the subsynaptic expression of pTDP-43 in the ALS mouse model, SOD1G93a, compared to healthy controls, despite prominent structural deficits in VGLUT1-associated synapses in SOD1G93a mice. This research characterises the basic synaptic expression of TDP-43 with nanoscale precision and provides a framework with which to investigate the potential relationship between TDP-43 pathology and synaptic pathology in neurodegenerative diseases.

6.
Nat Mach Intell ; 5(8): 933-946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615030

RESUMO

Parkinson's disease is a common, incurable neurodegenerative disorder that is clinically heterogeneous: it is likely that different cellular mechanisms drive the pathology in different individuals. So far it has not been possible to define the cellular mechanism underlying the neurodegenerative disease in life. We generated a machine learning-based model that can simultaneously predict the presence of disease and its primary mechanistic subtype in human neurons. We used stem cell technology to derive control or patient-derived neurons, and generated different disease subtypes through chemical induction or the presence of mutation. Multidimensional fluorescent labelling of organelles was performed in healthy control neurons and in four different disease subtypes, and both the quantitative single-cell fluorescence features and the images were used to independently train a series of classifiers to build deep neural networks. Quantitative cellular profile-based classifiers achieve an accuracy of 82%, whereas image-based deep neural networks predict control and four distinct disease subtypes with an accuracy of 95%. The machine learning-trained classifiers achieve their accuracy across all subtypes, using the organellar features of the mitochondria with the additional contribution of the lysosomes, confirming the biological importance of these pathways in Parkinson's. Altogether, we show that machine learning approaches applied to patient-derived cells are highly accurate at predicting disease subtypes, providing proof of concept that this approach may enable mechanistic stratification and precision medicine approaches in the future.

7.
Protein Sci ; 32(10): e4736, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515406

RESUMO

Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between ß-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.


Assuntos
Amiloide , alfa-Sinucleína , alfa-Sinucleína/química , Amiloide/química , Membrana Celular/metabolismo , Corpos de Lewy/metabolismo , Lipídeos
8.
Neuron ; 111(14): 2170-2183.e6, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192625

RESUMO

In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Proteínas tau/metabolismo
9.
J Am Soc Mass Spectrom ; 34(5): 847-856, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976861

RESUMO

α-Synuclein (αSyn), a 140-residue intrinsically disordered protein, comprises the primary proteinaceous component of pathology-associated Lewy body inclusions in Parkinson's disease (PD). Due to its association with PD, αSyn is studied extensively; however, the endogenous structure and physiological roles of this protein are yet to be fully understood. Here, ion mobility-mass spectrometry and native top-down electron capture dissociation fragmentation have been used to elucidate the structural properties associated with a stable, naturally occurring dimeric species of αSyn. This stable dimer appears in both wild-type (WT) αSyn and the PD-associated variant A53E. Furthermore, we integrated a novel method for generating isotopically depleted protein into our native top-down workflow. Isotope depletion increases signal-to-noise ratio and reduces the spectral complexity of fragmentation data, enabling the monoisotopic peak of low abundant fragment ions to be observed. This enables the accurate and confident assignment of fragments unique to the αSyn dimer to be assigned and structural information about this species to be inferred. Using this approach, we were able to identify fragments unique to the dimer, which demonstrates a C-terminal to C-terminal interaction between the monomer subunits. The approach in this study holds promise for further investigation into the structural properties of endogenous multimeric species of αSyn.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Espectrometria de Massas , Proteínas Intrinsicamente Desordenadas/metabolismo
10.
Angew Chem Int Ed Engl ; 62(15): e202216771, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762870

RESUMO

Protein misfolding and aggregation into oligomeric and fibrillar structures is a common feature of many neurogenerative disorders. Single-molecule techniques have enabled characterization of these lowly abundant, highly heterogeneous protein aggregates, previously inaccessible using ensemble averaging techniques. However, they usually rely on the use of recombinantly-expressed labeled protein, or on the addition of amyloid stains that are not protein-specific. To circumvent these challenges, we have made use of a high affinity antibody labeled with orthogonal fluorophores combined with fast-flow microfluidics and single-molecule confocal microscopy to specifically detect α-synuclein, the protein associated with Parkinson's disease. We used this approach to determine the number and size of α-synuclein aggregates down to picomolar concentrations in biologically relevant samples.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Agregados Proteicos , Amiloide/química , Proteínas Amiloidogênicas
11.
Angew Chem Int Ed Engl ; 62(4): e202216231, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36412996

RESUMO

The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.


Assuntos
Aminoácidos , Peptídeos , Animais , Camundongos , Aminas , Corantes Fluorescentes/química , Imagem Óptica/métodos , Técnicas de Síntese em Fase Sólida
12.
J Pathol Clin Res ; 9(1): 44-55, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226890

RESUMO

Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) are traditionally considered strictly neurological disorders. However, clinical presentation is not restricted to neurological systems, and non-central nervous system (CNS) manifestations, particularly gastrointestinal (GI) symptoms, are common. Our objective was to understand the systemic distribution of pathology in archived non-CNS tissues, taken as part of routine clinical practice during life from people with ALS. We examined tissue from 13 people who went on to develop ALS; including sporadic ALS (n = 12) and C9orf72 hexanucleotide repeat expansion (n = 1). The tissue cohort consisted of 68 formalin-fixed paraffin embedded samples from 21 surgical cases (some patients having more than one case over their lifetimes), from 8 organ systems, which we examined for evidence of phosphorylated TDP-43 (pTDP-43) pathology. We identified pTDP-43 aggregates in multiple cell types of the GI tract, including macrophages and dendritic cells within the lamina propria; as well as ganglion/neuronal and glial cells of the myenteric plexus. Aggregates were also noted within lymph node parenchyma, blood vessel endothelial cells, and chondrocytes. We note that in all cases with non-CNS pTDP-43 pathology, aggregates were present prior to ALS diagnosis and in some instances preceded neurological symptom onset by more than 10 years. These data imply that patients with microscopically unexplained non-CNS symptoms could have occult protein aggregation that could be detected many years prior to neurological involvement.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Células Endoteliais
13.
Protein Sci ; 32(2): e4558, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585831

RESUMO

We present direct-LIVE-PAINT, an easy-to-implement approach for the nanoscopic imaging of protein structures in live cells using labeled binding peptides. We demonstrate the feasibility of direct-LIVE-PAINT with an actin-binding peptide fused to EGFP, the location of which can be accurately determined as it transiently binds to actin filaments. We show that direct-LIVE-PAINT can be used to image actin structures below the diffraction-limit of light and have used it to observe the dynamic nature of actin in live cells. We envisage a similar approach could be applied to imaging other proteins within live mammalian cells.


Assuntos
Citoesqueleto de Actina , Actinas , Animais , Actinas/metabolismo , Ligação Proteica , Mamíferos
14.
Angew Chem Weinheim Bergstr Ger ; 135(4): e202216231, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38515539

RESUMO

The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.

15.
Angew Chem Weinheim Bergstr Ger ; 135(15): e202216771, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516037

RESUMO

Protein misfolding and aggregation into oligomeric and fibrillar structures is a common feature of many neurogenerative disorders. Single-molecule techniques have enabled characterization of these lowly abundant, highly heterogeneous protein aggregates, previously inaccessible using ensemble averaging techniques. However, they usually rely on the use of recombinantly-expressed labeled protein, or on the addition of amyloid stains that are not protein-specific. To circumvent these challenges, we have made use of a high affinity antibody labeled with orthogonal fluorophores combined with fast-flow microfluidics and single-molecule confocal microscopy to specifically detect α-synuclein, the protein associated with Parkinson's disease. We used this approach to determine the number and size of α-synuclein aggregates down to picomolar concentrations in biologically relevant samples.

16.
NPJ Parkinsons Dis ; 8(1): 162, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424392

RESUMO

Mutations in the SNCA gene cause autosomal dominant Parkinson's disease (PD), with loss of dopaminergic neurons in the substantia nigra, and aggregation of α-synuclein. The sequence of molecular events that proceed from an SNCA mutation during development, to end-stage pathology is unknown. Utilising human-induced pluripotent stem cells (hiPSCs), we resolved the temporal sequence of SNCA-induced pathophysiological events in order to discover early, and likely causative, events. Our small molecule-based protocol generates highly enriched midbrain dopaminergic (mDA) neurons: molecular identity was confirmed using single-cell RNA sequencing and proteomics, and functional identity was established through dopamine synthesis, and measures of electrophysiological activity. At the earliest stage of differentiation, prior to maturation to mDA neurons, we demonstrate the formation of small ß-sheet-rich oligomeric aggregates, in SNCA-mutant cultures. Aggregation persists and progresses, ultimately resulting in the accumulation of phosphorylated α-synuclein aggregates. Impaired intracellular calcium signalling, increased basal calcium, and impairments in mitochondrial calcium handling occurred early at day 34-41 post differentiation. Once midbrain identity fully developed, at day 48-62 post differentiation, SNCA-mutant neurons exhibited mitochondrial dysfunction, oxidative stress, lysosomal swelling and increased autophagy. Ultimately these multiple cellular stresses lead to abnormal excitability, altered neuronal activity, and cell death. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease.

18.
Nat Neurosci ; 25(9): 1134-1148, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36042314

RESUMO

Aggregation of alpha-synuclein (α-Syn) drives Parkinson's disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)-derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Cardiolipinas/metabolismo , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
19.
Front Bioeng Biotechnol ; 10: 915035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875503

RESUMO

We present a new method for the surface capture of proteins in cell-free protein synthesis (CFPS). We demonstrate the spontaneous self-assembly of the protein BslA into functionalizable surfaces on the surface of a CFPS reaction chamber. We show that proteins can be covalently captured by such surfaces, using "Catcher/Tag" technology. Importantly, proteins of interest can be captured either when synthesised in situ by CFPS above the BslA surfaces, or when added as pure protein. The simplicity and cost efficiency of this method suggest that it will find many applications in cell-free-based methods.

20.
Nat Commun ; 13(1): 3306, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739092

RESUMO

Aptamers are artificial oligonucleotides binding to specific molecular targets. They have a promising role in therapeutics and diagnostics but are often difficult to design. Here, we exploited the catRAPID algorithm to generate aptamers targeting TAR DNA-binding protein 43 (TDP-43), whose aggregation is associated with Amyotrophic Lateral Sclerosis. On the pathway to forming insoluble inclusions, TDP-43 adopts a heterogeneous population of assemblies, many smaller than the diffraction-limit of light. We demonstrated that our aptamers bind TDP-43 and used the tightest interactor, Apt-1, as a probe to visualize TDP-43 condensates with super-resolution microscopy. At a resolution of 10 nanometers, we tracked TDP-43 oligomers undetectable by standard approaches. In cells, Apt-1 interacts with both diffuse and condensed forms of TDP-43, indicating that Apt-1 can be exploited to follow TDP-43 phase transition. The de novo generation of aptamers and their use for microscopy opens a new page to study protein condensation.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Oligonucleotídeos , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA