Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320988

RESUMO

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioma/genética , Neoplasias Encefálicas/genética , Proteína 1 Semelhante à Quitinase-3
2.
Nature ; 613(7942): 179-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517594

RESUMO

Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Sinalização do Cálcio , Morte Celular , Análise de Sobrevida , Cálcio/metabolismo
3.
Stem Cell Res ; 66: 102989, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36473250

RESUMO

Brain-derived neurotrophic factor (BDNF) has been implicated in a multitude of neurodevelopmental processes including neuronal differentiation, axonal outgrowth, synaptic plasticity, or survival. One human-specific single nucleotide polymorphism (rs6265) in the BDNF gene causes a substitution of valine (Val) to methionine (Met) at codon 66 in the pro domain of the protein (Val66Met). This substitution is associated to reduced hippocampal volumes, poor performance on hippocampal-dependent memory tasks, and some mental disorders such as schizophrenia, depression or Alzheimer's disease. Here we generated three iPSC lines from healthy donors, either homozygous (Val/Val and Met/Met) or heterozygous (Val/Met) for the polymorphism.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Hipocampo/metabolismo , Metionina/genética , Racemetionina
4.
Cell Death Dis ; 13(10): 887, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270985

RESUMO

In humans, most neurons are born during embryonic development and have to persist throughout the entire lifespan of an individual. Thus, human neurons have to develop elaborate survival strategies to protect against accidental cell death. We set out to decipher the developmental adaptations resulting in neuronal resilience. We demonstrate that, during the time course of maturation, human neurons install a complex and complementary anti-apoptotic signaling network. This includes i.) a downregulation of central proteins of the intrinsic apoptosis pathway including several caspases, ii.) a shift in the ratio of pro- and anti-apoptotic BCL-2 family proteins, and iii.) an elaborate regulatory network resulting in upregulation of the inhibitor of apoptosis protein (IAP) XIAP. Together, these adaptations strongly increase the threshold for apoptosis initiation when confronted with a wide range of cellular stressors. Our results highlight how human neurons are endowed with complex and redundant preemptive strategies to protect against stress and cell death.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Caspases/metabolismo , Apoptose/fisiologia , Morte Celular , Proteínas Inibidoras de Apoptose/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
5.
Anal Chem ; 94(25): 8847-8856, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35713335

RESUMO

Depression is quickly becoming one of the world's most pressing public health crises, and there is an urgent need for better diagnostics and therapeutics. Behavioral models in animals and humans have not adequately addressed the diagnosis and treatment of depression, and biomarkers of mental illnesses remain ill-defined. It has been very difficult to identify biomarkers of depression because of in vivo measurement challenges. While our group has made important strides in developing in vivo tools to measure such biomarkers (e.g., serotonin) in mice using voltammetry, these tools cannot be easily applied for depression diagnosis and drug screening in humans due to the inaccessibility of the human brain. In this work, we take a chemical approach, ex vivo, to introduce a human-derived system to investigate brain serotonin. We utilize human induced pluripotent stem cells differentiated into serotonin neurons and establish a new ex vivo model of real-time serotonin neurotransmission measurements. We show that evoked serotonin release responds to stimulation intensity and tryptophan preloading, and that serotonin release and reuptake kinetics resemble those found in vivo in rodents. Finally, after selective serotonin reuptake inhibitor (SSRI) exposure, we find dose-dependent internalization of the serotonin reuptake transporters (a signature of the in vivo response to SSRI). Our new human-derived chemical model has great potential to provide an ex vivo chemical platform as a translational tool for in vivo neuropsychopharmacology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Serotonina , Animais , Biomarcadores , Humanos , Camundongos , Neurônios , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
6.
EMBO Rep ; 23(5): e54027, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35289477

RESUMO

Malformations of human cortical development (MCD) can cause severe disabilities. The lack of human-specific models hampers our understanding of the molecular underpinnings of the intricate processes leading to MCD. Here, we use cerebral organoids derived from patients and genome edited-induced pluripotent stem cells to address pathophysiological changes associated with a complex MCD caused by mutations in the echinoderm microtubule-associated protein-like 1 (EML1) gene. EML1-deficient organoids display ectopic neural rosettes at the basal side of the ventricular zone areas and clusters of heterotopic neurons. Single-cell RNA sequencing shows an upregulation of basal radial glial (RG) markers and human-specific extracellular matrix components in the ectopic cell population. Gene ontology and molecular analyses suggest that ectopic progenitor cells originate from perturbed apical RG cell behavior and yes-associated protein 1 (YAP1)-triggered expansion. Our data highlight a progenitor origin of EML1 mutation-induced MCD and provide new mechanistic insight into the human disease pathology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Córtex Cerebral/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Neurônios/metabolismo , Organoides/metabolismo
7.
J Steroid Biochem Mol Biol ; 182: 119-126, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29751108

RESUMO

Glucocorticoids (GC) have first been shown to originate from the adrenal glands where synthesis and release is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. Recently, it was shown that GC and other steroid hormones are also synthesized in the central nervous system, so-called neurosteroids. GC bind to specific GC receptors (GR) which function as ligand-activated transcription factors. GR are expressed in nearly all cell types in the brain, and therefore GC have a strong impact on neuronal development. Most knowledge of the influence of GC on neurodevelopment has been obtained from animal research. Recent advances in stem cell technology made it possible to generate neuronal precursor cells (NPCs) and neurons from human induced pluripotent stem cells (hiPSCs). To explore the cellular mechanism of GC affecting human neuronal development, we quantified the proliferation and differentiation of hiPSCs-derived NPCs in the absence and presence of the selective high-affinity GR agonist dexamethasone and the selective GR antagonist mifepristone, respectively. Our results show that inhibition of GR significantly reduced proliferation of NPCs and promoted differentiation whereas GR activation suppressed neuronal differentiation. This implies that neuronal GC must be present in NPCs for proliferation. Consequently we identified the presence of 11-ß-hydroxylase CYP11B1, which hydroxylates the respective steroid precursors to bioactive GC, in NPCs. We propose that hiPSC technology offers an ideal system to get more insight into the synthesising and regulatory pathways in steroidogenesis in human neurons and to differentiate between the mechanism by which adrenal GC and neuronal GC impact on neurodevelopment.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Neurogênese , Neurônios/citologia , Receptores de Glucocorticoides/metabolismo , Anti-Inflamatórios/farmacologia , Células Cultivadas , Dexametasona/farmacologia , Antagonistas de Hormônios/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mifepristona/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Glucocorticoides/genética , Transdução de Sinais
8.
Dis Model Mech ; 10(4): 451-461, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28167616

RESUMO

The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene (Slc6a3_N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Animais , Comportamento Animal , Modelos Animais de Doenças , Dopamina , Células HEK293 , Humanos , Mutação com Perda de Função , Masculino , Proteínas Mutantes/metabolismo , Fenótipo , Mutação Puntual , Psiquiatria , Ratos Endogâmicos F344
9.
Stem Cell Res ; 15(1): 30-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26001168

RESUMO

Human induced pluripotent stem cells (hiPSCs) are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after terminal differentiation. For this purpose we have analyzed neuronal and glial cell markers, neuronal outgrowth, soma size, depolarization-induced distal shifts of the axon initial segment as well as glutamate-evoked calcium influx. Retinoic acid preconditioning led to a higher yield of neurons vs. glia cells and longer axons than unconditioned controls. In contrast, glutamatergic activation and depolarization induced structural plasticity were unchanged. Our results show that the treatment of neuroectodermal cells with retinoic acid during early development, i.e. during the neurulation phase, increases the yield of neuronal phenotypes, but does not impact on the functionality of terminally differentiated neuronal cells.


Assuntos
Forma Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Tretinoína/farmacologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Ácido Glutâmico/farmacologia , Humanos , Imageamento Tridimensional , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Regulação para Cima/efeitos dos fármacos
10.
Neuroreport ; 21(3): 185-90, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20087235

RESUMO

We have examined the potency of two methods for the neuronal differentiation of embryonic stem cells on the generation of neuronal cells from human blood cells. A mixture of mononuclear cells from peripheral blood cells expressing monocytic, hematopoietic, and mesenchymal cell surface markers were exposed to all-trans retinoic acid, epidermal growth factor, and basic fibroblast growth factor (method A), or epidermal growth factor, fibroblast growth factor 8b, sonic hedgehog and ascorbic acid (method B). Both methods led to the generation of neuronal cells as judged by changes in morphology and the expression of the neuronal markers microtubule-associated protein type 2, tau, and beta-tubulin III. Differentiation according to method B favoured the development of neurons also expressing the dopamine transporter.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Leucócitos Mononucleares/citologia , Neurônios/citologia , Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Separação Celular , Receptores ErbB/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Citometria de Fluxo , Imunofluorescência , Proteínas Hedgehog/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tretinoína/farmacologia
11.
Neurochem Int ; 54(3-4): 271-6, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19121357

RESUMO

In the central nervous system serotonergic neurotransmission is terminated by the rapid removal of serotonin (5-hydroxytryptamine, 5HT) out of the extra-cellular space back into the presynaptic neuron. This task is fulfilled by a specific serotonin transporter (SERT) protein which controls the concentration of extra-cellular 5HT. Consequently, one mechanism to regulate the efficacy of serotonergic neurotransmission is via modulation of the density of SERT molecules on the cell membrane. In this regard it has been shown, that chronic activation of the p38 mitogen-activated protein kinase (p38 MAPK) leads to enhanced SERT surface expression whereas activation of protein kinase C (PKC) reduces SERT surface expression. In addition, it has been reported that exposure to selective serotonin re-uptake inhibitors (SSRIs) leads to a down-regulation of SERT expression in vivo and in vitro in different cellular systems. Here, we have studied interactions between kinase- and SSRI-induced SERT internalization in mouse stem cell-derived serotonergic neurons expressing the native SERT allele in its natural surroundings. Therefore we established a method to quantify the amount of cell surface-expressed SERT molecules on individual cells by antibody detection combined with confocal laser scanning microscopy. Using this methodology we could show that activation of PKC, inhibition of the p38 MAPK as well as exposure to the SSRI citalopram each induced a significant reduction of cell surface-expressed SERT over time. Combinations of PKC activation, p38 MAPK inhibition and SSRI exposure led to a more pronounced down-regulation of SERT surface expression depending on the time of drug exposure.


Assuntos
Endocitose/fisiologia , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem da Célula/fisiologia , Citalopram/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/metabolismo , Camundongos , Microscopia Confocal , Neurogênese/fisiologia , Neurônios/citologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Transporte Proteico/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Células-Tronco/citologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
FASEB J ; 22(6): 1702-14, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18216289

RESUMO

A deficiency of serotonergic signaling is thought to be involved in the etiology of depression. Thus, drugs blocking the reuptake of serotonin back into the neurons are widely used in treatment of this disease; however, their delayed effect in remission of patients suggests that the clinical response does not rely on simple serotonin uptake inhibition but may include further regulatory mechanisms. We have analyzed cellular serotonin transporter (SERT) expression on exposure to the selective serotonin reuptake inhibitor citalopram in serotonergic neurons expressing the native SERT allele in its natural surroundings. Biotinylation of SERT-expressing HEK293 cells, as well as confocal microscopy analysis in these cells and in serotonergic neurons, revealed that exposure to citalopram time dependently reduces the amount of cell surface-expressed SERT. Furthermore, in serotonergic neurons, longer exposure to citalopram not only caused an internalization of SERT proteins from the cell surface but also induced a redistribution of SERT from neurite extensions into the soma. This process was reversible on drug removal. Microarray analysis performed on citalopram-treated serotonergic neurons revealed that antidepressant treatment does not alter SERT mRNA expression, suggesting that SERT trafficking from and to the cell membrane is regulated on the posttranscriptional level.


Assuntos
Endocitose/efeitos dos fármacos , Neurônios/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/análise , Antidepressivos , Linhagem Celular , Citalopram/farmacologia , Humanos , Cinética , Neuritos/química , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/análise , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Distribuição Tecidual
13.
Neurochem Int ; 52(4-5): 770-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17949855

RESUMO

Compelling evidence has been provided that Na(+) and Cl(-)-dependent neurotransmitter transporter proteins form oligomeric complexes. Specific helix-helix interactions in lipid bilayers are thought to promote the assembly of integral membrane proteins to oligomeric structures. These interactions are determined by selective transmembrane helix packing motifs one of which is the Glycophorin A motif (GxxxG). This motif is present in the sixth transmembrane domain of most transporter proteins. In order to investigate, whether this motif is important for proper expression and function of the serotonin transporter (SERT), we have analysed the effect of mutating the respective glycine residues Gly338 and Gly342 to valine upon transient expression of the respective cDNAs in HEK293 cells. As revealed by western blotting, wildtype SERT is found in monomeric and dimeric forms while both mutants are expressed as monomers solely. Confocal microscopy revealed that the wildtype SERT is expressed at the cell surface, whereas both mutant proteins are localised in intracellular compartments. Failure of integration into the cell membrane is responsible for a total loss of [(3)H]5HT uptake capability by the mutants. These findings show that in the SERT protein the integrity of the GxxxG motif is essential for dimerisation and proper targeting of the transporter complex to the cell surface.


Assuntos
Glicina/metabolismo , Glicoproteínas de Membrana/biossíntese , Proteínas da Membrana Plasmática de Transporte de Serotonina/biossíntese , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/fisiologia , Western Blotting , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citalopram/metabolismo , Interpretação Estatística de Dados , Dimerização , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Glicoforinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Mutação , Ensaio Radioligante , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Valina/metabolismo
14.
J Neurochem ; 86(4): 958-65, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12887693

RESUMO

Re-uptake of the neurotransmitters serotonin and noradrenaline out of the synaptic cleft is mediated by selective transporter proteins, the serotonin transporter and the noradrenaline transporter respectively. Both are integral membrane proteins that are have a high degree of homology and represent members of a larger neurotransmitter transporter superfamily. Several studies have indicated that the serotonin transporter has an an oligomeric structure. To determine whether monoamine transporters can also function in oligomeric structures in situ, we constructed a concatenate consisting of one molecule of serotonin transporter covalently linked to one molecule of noradrenaline transporter. Heterologous expression of this hybrid construct allowed us to analyse the function, i.e. transport activity, and the structure, i.e. the molecular weight of the total construct and of its single components, at the same time. We showed that serotonin-noradrenaline transporter fusion proteins are fully active and exhibit the pharmacological profile of both their individual components. These findings support the hypothesis that monoamine transporters are expressed and may function as oligomeric proteins composed of non-interacting monomers.


Assuntos
Proteínas de Transporte/metabolismo , Fluoxetina/análogos & derivados , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas do Tecido Nervoso , Simportadores/metabolismo , Sequência de Aminoácidos , Animais , Antidepressivos/farmacocinética , Ligação Competitiva/efeitos dos fármacos , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/metabolismo , Citalopram/farmacocinética , Fluoxetina/farmacocinética , Humanos , Imipramina/farmacocinética , Immunoblotting , Rim/citologia , Rim/metabolismo , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Norepinefrina/metabolismo , Norepinefrina/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serotonina/metabolismo , Serotonina/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Serotonina , Simportadores/genética , Transfecção , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA