Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
JCI Insight ; 3(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333320

RESUMO

Sensitization to Aspergillus species is associated with allergic respiratory diseases. Allergen immunotherapy with nonstandardized Aspergillus extracts is commonly used as therapy in these patients. Unfortunately, no method exists to measure the relevant allergen protein content in diagnostic and therapeutic extracts. Thus, there is a critical need for Aspergillus extract standardization. We hypothesized that development of Aspergillus-specific human IgE mAbs would allow for the characterization of the relevant human allergenic epitopes among currently available commercial Aspergillus fumigatus extracts. Patients with allergic bronchopulmonary mycosis were recruited from Vanderbilt University Medical Center. IgE antibody-secreting B cells were grown and immortalized using human hybridoma techniques first described here. Twenty-six human Aspergillus-reactive IgE mAbs were used as capture and detection reagents to characterize the Aspergillus allergen content of commercial extracts. We found extreme variability in the specificity and quantity of their protein targets. Just 4 mAbs reacted with all available extracts, and only 1 of 4 extracts contained the major allergen Asp f 1. This degree of variability will almost certainly affect the efficacy of these reagents when used in diagnosis and treatment. Human IgE mAbs represent an innovative tool for the evaluation of relevant human allergenic epitopes, which may assist in future development and long-term standardization of mold extracts.


Assuntos
Alérgenos/administração & dosagem , Aspergillus fumigatus/imunologia , Dessensibilização Imunológica/métodos , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Monitorização Imunológica/métodos , Adolescente , Idoso de 80 Anos ou mais , Alérgenos/imunologia , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Antígenos de Fungos/imunologia , Dessensibilização Imunológica/normas , Epitopos/imunologia , Estudos de Viabilidade , Humanos , Hibridomas , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Aspergilose Pulmonar Invasiva/sangue , Aspergilose Pulmonar Invasiva/imunologia , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
2.
Proc Natl Acad Sci U S A ; 115(40): 10124-10129, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30228116

RESUMO

The rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures. We subsequently simplified the community to just two strains and identified Amycolatopsis sp. AA4 as the producing strain and Streptomyces coelicolor M145 as an inducing strain. Bioassay-guided isolation identified amycomicin (AMY), a highly modified fatty acid containing an epoxide isonitrile warhead as a potent and specific inhibitor of Staphylococcus aureus Amycomicin targets an essential enzyme (FabH) in fatty acid biosynthesis and reduces S. aureus infection in a mouse skin-infection model. The discovery of AMY demonstrates the utility of screening complex communities against specific targets to discover small-molecule antibiotics.


Assuntos
Antraquinonas/farmacologia , Antibacterianos/farmacologia , Streptomyces coelicolor/crescimento & desenvolvimento , Antraquinonas/química , Antibacterianos/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Testes de Sensibilidade Microbiana/métodos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Streptomyces coelicolor/genética
3.
Proc Natl Acad Sci U S A ; 114(32): E6652-E6659, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739897

RESUMO

Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Coproporfirinas/biossíntese , Fármacos Fotossensibilizantes/metabolismo , Fototerapia , Infecções Cutâneas Estafilocócicas/enzimologia , Infecções Cutâneas Estafilocócicas/terapia , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/genética , Coproporfirinogênio Oxidase/genética , Coproporfirinas/genética , Modelos Animais de Doenças , Camundongos , Staphylococcus aureus/genética
4.
J Bacteriol ; 198(6): 964-72, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26755631

RESUMO

UNLABELLED: Urinary tract infection (UTI) is one of the most common ailments requiring both short-term and prophylactic antibiotic therapies. Progression of infection from the bladder to the kidney is associated with more severe clinical symptoms (e.g., fever and vomiting) as well as with dangerous disease sequelae (e.g., renal scaring and sepsis). Host-pathogen interactions that promote bacterial ascent to the kidney are not completely understood. Prior studies indicate that the magnitude of proinflammatory cytokine elicitation in vitro by clinical isolates of uropathogenic Escherichia coli (UPEC) inversely correlates with the severity of clinical disease. Therefore, we hypothesize that the magnitude of initial proinflammatory responses during infection defines the course and severity of disease. Clinical UPEC isolates obtained from patients with a nonfebrile UTI elicited high systemic proinflammatory responses early during experimental UTI in a murine model and were attenuated in bladder and kidney persistence. Conversely, UPEC isolates obtained from patients with febrile UTI elicited low systemic proinflammatory responses early during experimental UTI and exhibited prolonged persistence in the bladder and kidney. Soluble factors in the supernatant from saturated cultures as well as the lipopolysaccharide (LPS) serotype correlated with the magnitude of proinflammatory responses in vitro. Our data suggest that the structure of the O-antigen sugar moiety of the LPS may determine the strength of cytokine induction by epithelial cells. Moreover, the course and severity of disease appear to be the consequence of the magnitude of initial cytokines produced by the bladder epithelium during infection. IMPORTANCE: The specific host-pathogen interactions that determine the extent and course of disease are not completely understood. Our studies demonstrate that modest changes in the magnitude of cytokine production observed using in vitro models of infection translate into significant ramifications for bacterial persistence and disease severity. While many studies have demonstrated that modifications of the LPS lipid A moiety modulate the extent of Toll-like receptor 4 (TLR4) activation, our studies implicate the O-antigen sugar moiety as another potential rheostat for the modulation of proinflammatory cytokine production.


Assuntos
Citocinas/metabolismo , Antígenos O/imunologia , Sorogrupo , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Camundongos , Antígenos O/classificação , Sistema Urinário/imunologia , Sistema Urinário/microbiologia , Sistema Urinário/patologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/isolamento & purificação , Escherichia coli Uropatogênica/patogenicidade
5.
PLoS One ; 8(3): e60363, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533678

RESUMO

Helicobacter pylori infection leads to an inflammatory response in 100% of infected individuals. The inflammatory cells which are recruited to the gastric mucosa during infection produce several pro- and anti-inflammatory cytokines including several cytokines in the interleukin-17 family. The anti-inflammatory cytokine, interleukin 25 (IL-25, also known as IL-17E), signals through a receptor, which is a heterotrimeric receptor comprised of two IL-17 receptor A subunits and an IL-17 receptor B subunit. Previous studies in our laboratory demonstrated that IL-17RA is required to control infection with Helicobacter pylori in the mouse model. Moreover, the absence of IL-17 receptor A leads to a significant B cell infiltrate and a remarkable increase in lymphoid follicle formation in response to infection compared to infection in wild-type mice. We hypothesized that IL-25, which requires both IL-17 receptor A and IL-17 receptor B for signaling, may play a role in control of inflammation in the mouse model of Helicobacter pylori infection. IL-17 receptor B deficient mice, IL-17 receptor A deficient mice and wild-type mice were infected with Helicobacter pylori (strains SS1 and PMSS1). At several time points H. pylori-infected mice were sacrificed to investigate their ability to control infection and inflammation. Moreover, the effects of IL-17 receptor B deficiency on T helper cytokine expression and H. pylori- specific serum antibody responses were measured. IL-17 receptor B-/- mice (unlike IL-17 receptor A-/- mice) exhibited similar or modest changes in gastric colonization, inflammation, and Th1 and Th17 helper cytokine responses to wild-type mice infected with Helicobacter pylori. However, H. pylori-infected IL-17 receptor B-/- mice have reduced expression of IL-4 and lower serum IgG1 and IgG2a levels compared to infected IL-17 receptor A-/- and wild-type mice. These data indicate that signaling through the IL-17 receptor B subunit is not necessary for control of Helicobacter pylori in our model.


Assuntos
Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Receptores de Interleucina-17/metabolismo , Animais , Feminino , Citometria de Fluxo , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores de Interleucina-17/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estômago/imunologia , Estômago/microbiologia
6.
Indian J Urol ; 28(2): 154-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22919128

RESUMO

Urinary tract infections (UTIs) represent one of the most commonly acquired diseases among the general population as well as hospital in-patients, yet remain difficult to effectively and consistently treat. High rates of recurrence, anatomic abnormalities, and functional disturbances of the urinary tract all contribute to the difficulty in management of these infections. However, recent advances reveal important molecular and genetic factors that contribute to bacterial invasion and persistence in the urinary tract, particularly for the most common causative agent, uropathogenic Escherichia coli. Recent studies using animal models of experimental UTIs have recently provided mechanistic insight into the clinical observations that question the effectiveness of antibiotic therapy in treatment. Ultimately, continuing research will be necessary to identify the best targets for effective treatment of this costly and widespread infectious disease.

7.
Front Immunol ; 3: 56, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22566937

RESUMO

The immune response to Helicobacter pylori involves a mixed T helper-1, T helper-2, and T helper-17 response. It has been suggested that T helper cells contribute to the gastric inflammatory response during infection, and that T helper 1 (Th1) and T helper 17 (Th17) subsets may be required for control of H. pylori colonization in the stomach. The relative contributions of these subsets to gastritis and control of infection are still under investigation. IL-23 plays a role in stabilizing and expanding Th17 cell cytokine expression. Expression of IL-23, which is induced in dendritic cells and macrophages following co-culture with H. pylori, has also been reported to increase during H. pylori infection in humans and animal models. To investigate the role of IL-23 in H. pylori, we infected IL-23p19 deficient mice (IL-23-/-) and wild-type littermates with H. pylori strain SS1. At various time points post-infection, we assessed colonization, gastric inflammation, and cytokine profiles in the gastric tissue. Specifically, H. pylori-infected IL-23-/- mice have higher levels of H. pylori in their stomachs, significantly less chronic gastritis, and reduced expression of IL-17 and IFNγ compared to H. pylori-infected wild-type mice. While many of these differences were significant, the H. pylori infected IL-23-/- had mild increases in our measurements of disease severity. Our results indicate that IL-23 plays a role in the activation of the immune response and induction of gastritis in response to H. pylori by contributing to the control of infection and severity of gastritis.

8.
J Urol ; 188(1): 236-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22595065

RESUMO

PURPOSE: We hypothesized that virulence levels of Escherichia coli isolates causing pediatric urinary tract infections differ according to severity of infection and also among various uropathies known to contribute to pediatric urinary tract infections. We evaluated these relationships using in vitro cytokine interleukin-6 elicitation. MATERIALS AND METHODS: E. coli isolates were cultured from children presenting with urinary tract infections. In vitro cytokine (interleukin-6) elicitation was quantified for each isolate and the bacteria were grouped according to type of infection and underlying uropathy (neurogenic bladder, nonneurogenic bowel and bladder dysfunction, primary vesicoureteral reflux, no underlying etiology). RESULTS: A total of 40 E. coli isolates were collected from children with a mean age of 61.5 months (range 1 to 204). Mean level of in vitro cytokine elicitation from febrile urinary tract infection producing E. coli was significantly lower than for nonfebrile strains (p = 0.01). The interleukin-6 response to E. coli in the neurogenic bladder group was also significantly higher than in the vesicoureteral reflux (p = 0.01) and no underlying etiology groups (p = 0.02). CONCLUSIONS: In vitro interleukin-6 elicitation, an established marker to determine bacterial virulence, correlates inversely with clinical urinary tract infection severity. Less virulent, high cytokine producing E. coli were more likely to cause cystitis and were more commonly found in patients with neurogenic bladder and nonneurogenic bowel and bladder dysfunction, whereas higher virulence isolates were more likely to produce febrile urinary tract infections and to affect children with primary vesicoureteral reflux and no underlying etiology. These findings suggest that bacteria of different virulence levels may be responsible for differences in severity of pediatric urinary tract infections and may vary among different underlying uropathies.


Assuntos
Infecções por Escherichia coli/complicações , Escherichia coli/patogenicidade , Interleucina-6/sangue , Medição de Risco , Infecções Urinárias/complicações , Refluxo Vesicoureteral/etiologia , Criança , Pré-Escolar , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Prevalência , Índice de Gravidade de Doença , Estados Unidos/epidemiologia , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , Refluxo Vesicoureteral/sangue , Refluxo Vesicoureteral/epidemiologia , Virulência
9.
PLoS One ; 7(3): e33897, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470490

RESUMO

Despite the continually increasing rates of adverse perinatal outcomes across the globe, the molecular mechanisms that underlie adverse perinatal outcomes are not completely understood. Clinical studies report that 10% of pregnant women will experience a urinary tract infection (UTI) and there is an association of UTIs with adverse perinatal outcomes. We introduced bacterial cystitis into successfully outbred female mice at gestational day 14 to follow pregnancy outcomes and immunological responses to determine the mechanisms that underlie UTI-mediated adverse outcomes. Outbred fetuses from mothers experiencing localized cystitis displayed intrauterine growth restriction (20-80%) as early as 48 hours post-infection and throughout the remainder of normal gestation. Robust infiltration of cellular innate immune effectors was observed in the uteroplacental tissue following introduction of UTI despite absence of viable bacteria. The magnitude of serum proinflammatory cytokines is elevated in the maternal serum during UTI. This study demonstrates that a localized infection can dramatically impact the immunological status as well as the function of non-infected distal organs and tissues. This model can be used as a platform to determine the mechanism(s) by which proinflammatory changes occur between non-contiguous genitourinary organs.


Assuntos
Cistite/patologia , Infecções por Escherichia coli/etiologia , Infecções por Escherichia coli/patologia , Retardo do Crescimento Fetal , Infecções Urinárias/etiologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/isolamento & purificação , Animais , Cistite/imunologia , Citocinas/sangue , Células Dendríticas/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/patologia , Humanos , Infiltração Leucêmica , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Placenta/metabolismo , Gravidez , Complicações Infecciosas na Gravidez , Transcrição Gênica , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia
10.
J Urol ; 186(4 Suppl): 1678-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21855931

RESUMO

PURPOSE: The usefulness of prophylactic antibiotics to prevent recurrent urinary tract infections in children was recently questioned. Some groups have attempted to use probiotics, most commonly lactobacillus, to prevent recurrent infections by altering the intestinal bacterial reservoir with variable results. Mutaflor® is a possible alternative probiotic in which the active agent is Nissle 1917. Nissle 1917 is a commensal Escherichia coli strain that eradicates pathogenic bacteria from the gastrointestinal tract. Due to its ability to alter the intestinal biome we hypothesized that Mutaflor may have the potential to prevent recurrent urinary tract infections. Thus, we used an in vitro assay to analyze the effectiveness of Nissle 1917 for eradicating pediatric uropathogens. MATERIALS AND METHODS: We established a collection of 43 bacterial pediatric uropathogens. With each isolate a microcin-type assay was performed to determine the effectiveness of Nissle 1917 on bacterial growth inhibition and competitive overgrowth. RESULTS: Nissle 1917 adversely affected the growth of 34 of the 43 isolates (79%) isolates. It inhibited the growth of 21 isolates and overgrew 13. The percent of species adversely affected by Nissle 1917 was 40% for Pseudomonas, 50% for E. coli, Enterococcus and Staphylococcus, 100% for Klebsiella and Enterobacter, and 0% for Citrobacter and Serratia. CONCLUSIONS: Nissle 1917, the active agent in Mutaflor, inhibited or out competed most bacterial isolates. These mechanisms could be used in vivo to eradicate uropathogens from the gastrointestinal tract. Further study is needed to determine whether Mutaflor can prevent recurrent urinary tract infections in children.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Probióticos/farmacologia , Infecções Urinárias/prevenção & controle , Criança , Pré-Escolar , Contagem de Colônia Microbiana , Escherichia coli/isolamento & purificação , Trato Gastrointestinal/microbiologia , Humanos , Lactente , Recém-Nascido , Prevenção Secundária , Sistema Urinário/microbiologia , Infecções Urinárias/microbiologia
11.
Microbes Infect ; 13(5): 426-37, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21182979

RESUMO

Uropathogenic Escherichia coli proceed through a complex intracellular developmental pathway that includes multiple morphological changes. During intracellular growth within Toll-like receptor 4-activated superficial bladder epithelial cells, a subpopulation of uropathogenic E. coli initiates SulA-mediated filamentation. In this study, we directly investigated the role of bacterial morphology in the survival of uropathogenic E. coli from killing by phagocytes. We initially determined that both polymorphonuclear neutrophils and macrophages are recruited to murine bladder epithelium at times coincident with extracellular bacillary and filamentous uropathogenic E. coli. We further determined that bacillary uropathogenic E. coli were preferentially destroyed when mixed uropathogenic E. coli populations were challenged with cultured murine macrophages in vitro. Consistent with studies using elliptical-shaped polymers, the initial point of contact between the phagocyte and filamentous uropathogenic E. coli influenced the efficacy of internalization. These findings demonstrate that filamentous morphology provides a selective advantage for uropathogenic E. coli evasion of killing by phagocytes and defines a mechanism for the essential role for SulA during bacterial cystitis. Thus, morphological plasticity can be viewed as a distinct class of mechanism used by bacterial pathogens to subvert host immunity.


Assuntos
Infecções por Escherichia coli/imunologia , Imunidade Inata , Fagocitose/imunologia , Infecções Urinárias/imunologia , Escherichia coli Uropatogênica/fisiologia , Escherichia coli Uropatogênica/patogenicidade , Adulto , Animais , Linhagem Celular , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Feminino , Citometria de Fluxo , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Bexiga Urinária/citologia , Bexiga Urinária/imunologia , Bexiga Urinária/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/imunologia , Virulência
12.
Microbes Infect ; 12(8-9): 662-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20435157

RESUMO

Epithelial cells are highly regarded as the first line of defense against microorganisms, but the mechanisms used to control bacterial diseases are poorly understood. A component of the DNA damage repair regulon, SulA, is essential for UPEC virulence in a mouse model for human urinary tract infection, suggesting that DNA damage is a key mediator in the primary control of pathogens within the epithelium. In this study, we examine the role of DNA damage repair regulators in the intracellular lifestyle of UPEC within superficial bladder epithelial cells. LexA and RecA coordinate various operons for repair of DNA damage due to exogenous and endogenous agents and are known regulators of sulA. UPEC strains defective in regulation of the SOS response mediated by RecA and LexA display attenuated virulence in immunocompetent mice within the first 6 h post infection. RecA and LexA regulation of the SOS regulon is dispensable in immunocompromised mice. These data suggest that epithelial cells produce sufficient levels of DNA damaging agents, such that the bacterial DNA damage repair response is essential, as a means to control invading bacteria. Since many pathogens interact with the epithelium before exposure to professional phagocytes, it is likely that adaptation to oxidative radicals during intracellular growth provides additional protection from killing by innate immune phagocytes.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Escherichia coli/patologia , Regulação Bacteriana da Expressão Gênica , Recombinases Rec A/metabolismo , Resposta SOS em Genética , Serina Endopeptidases/metabolismo , Escherichia coli Uropatogênica/patogenicidade , Animais , Proteínas de Bactérias/genética , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Feminino , Deleção de Genes , Humanos , Camundongos , Camundongos Endogâmicos C3H , Recombinases Rec A/genética , Serina Endopeptidases/genética , Bexiga Urinária/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA