Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Control Release ; 360: 335-343, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37364797

RESUMO

The way a drug molecule is administered has always had a profound impact on people requiring medical interventions - from vaccine development to cancer therapeutics. In the Controlled Release Society Fall Symposium 2022, a trans-institutional group of scientists from industry, academia, and non-governmental organizations discussed what a breakthrough in the field of drug delivery constitutes. On the basis of these discussions, we classified drug delivery breakthrough technologies into three categories. In category 1, drug delivery systems enable treatment for new molecular entities per se, for instance by overcoming biological barriers. In category 2, drug delivery systems optimize efficacy and/or safety of an existing drug, for instance by directing distribution to their target tissue, by replacing toxic excipients, or by changing the dosing reqimen. In category 3, drug delivery systems improve global access by fostering use in low-resource settings, for instance by facilitating drug administration outside of a controlled health care institutional setting. We recognize that certain breakthroughs can be classified in more than one category. It was concluded that in order to create a true breakthrough technology, multidisciplinary collaboration is mandated to move from pure technical inventions to true innovations addressing key current and emerging unmet health care needs.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Preparações Farmacêuticas , Tecnologia
2.
Mol Pharm ; 19(5): 1540-1547, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35393854

RESUMO

Treatment of age-related macular degeneration (AMD) with anti-vascular endothelial growth factor (VEGF) biologic agents has been shown to restore and maintain visual acuity for many patients afflicted with wet AMD. These agents are usually administered via intravitreal injection at a dosing interval of 4-8 weeks. Employment of long-acting delivery (LAD) technologies could improve the therapeutic outcome, ensure timely treatment, and reduce burden on patients, caregivers, and the health care system. Development of LAD approaches requires thorough testing in pre-clinical species; however, therapeutic proteins of human origin may not be well tolerated during testing in non-human species due to immunogenicity. Here, we have engineered a surrogate porcine antibody Fab fragment (pigG6.31) from a human antibody for testing ocular LAD technologies in a porcine model. The engineered Fab retains the VEGF-A-binding and inhibition properties of the parental human Fab and has stability properties suitable for LAD evaluation. Upon intravitreal injection in minipigs, pigG6.31 showed first-order clearance from the ocular compartments with vitreal elimination rates consistent with other molecules of this size. Application of the surrogate molecule in an in vivo evaluation in minipigs of a prototype of the port delivery (PD) platform indicated continuous ocular delivery from the implant, with release kinetics consistent with both the results from in vitro release studies and the efficacy observed in human clinical studies of the PD system with ranibizumab (PDS). Anti-drug antibodies in the serum against pigG6.31 were not detected over exposure durations up to 16 weeks, suggesting that this molecule has low porcine immunogenicity.


Assuntos
Inibidores da Angiogênese , Degeneração Macular Exsudativa , Animais , Humanos , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Injeções Intravítreas , Engenharia de Proteínas , Ranibizumab/uso terapêutico , Suínos , Porco Miniatura/metabolismo , Tecnologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/tratamento farmacológico
3.
Clin Pharmacol Ther ; 111(4): 826-834, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064573

RESUMO

Delivery of biologics via cerebrospinal fluid (CSF) has demonstrated potential to access the tissues of the central nervous system (CNS) by circumventing the blood-brain barrier and blood-CSF barrier. Developing an effective CSF drug delivery strategy requires optimization of multiple parameters, including choice of CSF access point, delivery device technology, and delivery kinetics to achieve effective therapeutic concentrations in the target brain region, whereas also considering the biologic modality, mechanism of action, disease indication, and patient population. This review discusses key preclinical and clinical examples of CSF delivery for different biologic modalities (antibodies, nucleic acid-based therapeutics, and gene therapy) to the brain via CSF or CNS access routes (intracerebroventricular, intrathecal-cisterna magna, intrathecal-lumbar, intraparenchymal, and intranasal), including the use of novel device technologies. This review also discusses quantitative models of CSF flow that provide insight into the effect of fluid dynamics in CSF on drug delivery and CNS distribution. Such models can facilitate delivery device design and pharmacokinetic/pharmacodynamic translation from preclinical species to humans in order to optimize CSF drug delivery to brain regions of interest.


Assuntos
Produtos Biológicos , Encéfalo , Transporte Biológico/fisiologia , Barreira Hematoencefálica , Sistema Nervoso Central , Humanos
4.
Front Neuroimaging ; 1: 879098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555174

RESUMO

Background: Understanding the relationship between cerebrospinal fluid (CSF) dynamics and intrathecal drug delivery (ITDD) injection parameters is essential to improve treatment of central nervous system (CNS) disorders. Methods: An anatomically detailed in vitro model of the complete CSF system was constructed. Patient-specific cardiac- and respiratory-induced CSF oscillations were input to the model in the subarachnoid space and within the ventricles. CSF production was input at the lateral ventricles and CSF absorption at the superior sagittal sinus. A model small molecule simulated drug product containing fluorescein was imaged within the system over a period of 3-h post-lumbar ITDD injections and used to quantify the impact of (a) bolus injection volume and rate, (b) post-injection flush volume, rate, and timing, (c) injection location, and (d) type of injection device. For each experiment, neuraxial distribution of fluorescein in terms of spatial temporal concentration, area-under-the-curve (AUC), and percent of injected dose (%ID) to the brain was quantified at a time point 3-h post-injection. Results: For all experiments conducted with ITDD administration in the lumbar spine, %ID to the brain did not exceed 11.6% at a time point 3-h post-injection. Addition of a 12 mL flush slightly increased solute transport to the brain up to +3.9%ID compared to without a flush (p < 0.01). Implantation of a lumbar catheter with the tip at an equivalent location to the lumbar placed needle, but with rostral tip orientation, resulted in a small improvement of 1.5%ID to the brain (p < 0.05). An increase of bolus volume from 5 to 20 mL improved solute transport to the brain from 5.0 to 6.3%ID, but this improvement was not statistically significant. Increasing bolus injection rate from 5 to 13.3 mL/min lacked improvement of solute transport to the brain, with a value of 6.3 compared to 5.7%ID. Conclusion: The in vitro modeling approach allowed precisely controlled and repeatable parametric investigation of ITDD injection protocols and devices. In combination, the results predict that parametric changes in lumbar spine ITDD-injection related parameters and devices can alter %ID to the brain and be tuned to optimize therapeutic benefit to CNS targets.

5.
Adv Simul (Lond) ; 6(1): 12, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863399

RESUMO

We present a summary of the development and clinical use of two custom designed high-fidelity virtual-reality simulator training platforms. This simulator development program began in 2016 to support the phase III clinical trial Archway (ClinicalTrials.gov identifier, NCT03677934) intended to evaluate the Port Delivery System (PDS) developed by Genentech Inc. and has also been used to support additional clinical trials. The two simulators address two specific ophthalmic surgical procedures required for the successful use of PDS and provide state-of-the-art physical simulation models and graphics. The simulators incorporate customized active haptic feedback input devices that approximate different hand pieces including a custom hand piece specifically designed for PDS implantation. We further describe the specific challenges of the procedure and the development of corresponding training strategies realized within the simulation platform.

6.
Toxicol Pathol ; 49(3): 663-672, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33205714

RESUMO

The Port Delivery System with ranibizumab (PDS) is an investigational drug delivery system designed to provide continuous intravitreal release of ranibizumab for extended durations. The PDS consists of a permanent, surgically placed, refillable intraocular implant; a customized formulation of ranibizumab; and ancillary devices to support surgery and refill procedures. A toxicology program was conducted to evaluate the ocular toxicology and biocompatibility of the PDS to support its clinical development program and product registrational activities. PDS safety studies included a 6-month chronic toxicology evaluation in minipigs as well as evaluation of nonfunctional surrogate implants (comprised of the same implant materials but without ranibizumab) in rabbits. Biocompatibility of the implant and ancillary devices was evaluated in both in vitro and in vivo studies. Implants and extracts from implants and ancillary devices were nongenotoxic, noncytotoxic, nonsensitizing, and nonirritating. Ocular findings were comparable between implanted and sham-operated eyes, and no systemic toxicity was observed. The results of this nonclinical toxicology program demonstrated that the PDS was biocompatible and that intravitreal delivery of ranibizumab via the PDS did not introduce any new toxicology-related safety concerns relative to intravitreal injections, supporting ongoing PDS clinical development and product registrational evaluation.


Assuntos
Degeneração Macular , Ranibizumab , Inibidores da Angiogênese , Animais , Injeções Intravítreas , Degeneração Macular/tratamento farmacológico , Coelhos , Ranibizumab/uso terapêutico , Ranibizumab/toxicidade , Suínos , Porco Miniatura , Tomografia de Coerência Óptica
7.
Retina ; 40(8): 1520-1528, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31436674

RESUMO

PURPOSE: To develop an animal model of vitreous hemorrhage (VH) to explore the impact of surgical parameters on VH associated with insertion of the Port Delivery System with ranibizumab (PDS) implant. METHODS: Ninety eyes from 45 treatment-naive male Yucatan minipigs received PDS implant insertion or a sham procedure. The effect of prophylactic pars plana hemostasis, scleral incision length, scleral cauterization, surgical blade type/size, and viscoelastic usage on postsurgical VH was investigated. RESULTS: Postsurgical VH was detected in 60.0% (54/90) of implanted eyes. A systematic effect on VH was only detected for pars plana hemostasis before the pars plana incision. The percentage of eyes with VH was 96.6% (28/29) among eyes that did not receive prophylactic pars plana hemostasis and 42.4% (24/58) among eyes that did. There was no VH in eyes that received laser ablation of the pars plana using overlapping 1,000-ms spots; pars plana cautery or diathermy was less effective. The majority of all VH cases (83.3% [45/54]) were of mild to moderate severity (involving ≤25% of the fundus). CONCLUSION: In this minipig surgical model of VH, scleral dissection followed by pars plana laser ablation before pars plana incision most effectively mitigated VH secondary to PDS implant insertion.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Ranibizumab/administração & dosagem , Esclera/cirurgia , Corpo Vítreo/efeitos dos fármacos , Hemorragia Vítrea/etiologia , Animais , Implantes de Medicamento , Seguimentos , Homeostase , Pressão Intraocular/fisiologia , Masculino , Suínos , Porco Miniatura , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acuidade Visual/fisiologia , Hemorragia Vítrea/diagnóstico , Hemorragia Vítrea/prevenção & controle
8.
Ophthalmology ; 126(8): 1141-1154, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30946888

RESUMO

PURPOSE: To evaluate the safety and efficacy of the Port Delivery System with ranibizumab (PDS) for neovascular age-related macular degeneration (nAMD) treatment. DESIGN: Phase 2, multicenter, randomized, active treatment-controlled clinical trial. PARTICIPANTS: Patients diagnosed with nAMD within 9 months who had received 2 or more prior anti-vascular endothelial growth factor intravitreal injections and were responsive to treatment. METHODS: Patients were randomized 3:3:3:2 to receive the PDS filled with ranibizumab 10 mg/ml, 40 mg/ml, 100 mg/ml, or monthly intravitreal ranibizumab 0.5-mg injections. MAIN OUTCOME MEASURES: Time to first implant refill assessed when the last enrolled patient completed the month 9 visit (primary efficacy end point), improvement in best-corrected visual acuity (BCVA) and central foveal thickness (CFT), and safety. RESULTS: The primary analysis population was 220 patients, with 58, 62, 59, and 41 patients in the PDS 10-mg/ml, PDS 40-mg/ml, PDS 100-mg/ml, and monthly intravitreal ranibizumab 0.5-mg arms, respectively. Median time to first implant refill was 8.7, 13.0, and 15.0 months in the PDS 10-mg/ml, PDS 40-mg/ml, and PDS 100-mg/ml arms, respectively. At month 9, the adjusted mean BCVA change from baseline was ‒3.2 Early Treatment Diabetic Retinopathy Study (ETDRS) letters, ‒0.5 ETDRS letters, +5.0 ETDRS letters, and +3.9 ETDRS letters in the PDS 10-mg/ml, PDS 40-mg/ml, PDS 100-mg/ml, and monthly intravitreal ranibizumab 0.5-mg arms, respectively. At month 9, the adjusted mean CFT change from baseline was similar in the PDS 100-mg/ml and monthly intravitreal ranibizumab 0.5-mg arms. The optimized PDS implant insertion and refill procedures were generally well tolerated. After surgical procedure optimization, postoperative vitreous hemorrhage rate was 4.5% (7/157; 1 event classified as serious). There was no evidence of implant clogging. CONCLUSIONS: In the phase 2 Ladder trial, the PDS was generally well tolerated and demonstrated a dose response across multiple end points in patients with nAMD. The PDS 100-mg/ml arm showed visual and anatomic outcomes comparable with monthly intravitreal ranibizumab 0.5-mg injections but with a reduced total number of ranibizumab treatments. The PDS has the potential to reduce treatment burden in nAMD while maintaining vision.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Implantes de Medicamento , Degeneração Macular/tratamento farmacológico , Ranibizumab/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Injeções Intravítreas , Masculino , Pessoa de Meia-Idade
9.
J Phys Condens Matter ; 29(3): 034001, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-27845932

RESUMO

The desorption kinetics of a chiral compound, R-3-methylcyclohexanone (R-3MCHO), have been measured on both enantiomers of seven chiral Cu(hkl) R&S surfaces and on nine achiral Cu single crystal surfaces with surface structures that collectively span the various regions of the stereographic triangle. The naturally chiral surfaces have terrace-step-kink structures formed by all six possible combinations of the three low Miller index microfacets. The chirality of the kink sites is defined by the rotational orientation of the (1 1 1), (1 0 0) and (1 1 0) microfacets forming the kink. R-3MCHO adsorbs reversibly on these Cu surfaces and temperature programmed desorption has been used to measure its desorption energetics from the chiral kink sites. The desorption energies from the R- and S-kink sites are enantiospecific, [Formula: see text], on the chiral surfaces. The magnitude of the enantiospecificity is [Formula: see text] ≈ 1 kJ mol-1 on all seven chiral surfaces. However, the values of [Formula: see text] are sensitive to elements of the surface structure other than just their sense of chirality as defined by the rotational orientation of the low Miller index microfacets forming the kinks; [Formula: see text] changes sign within the set of surfaces of a given chirality.

10.
J Am Chem Soc ; 126(45): 14988-94, 2004 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-15535728

RESUMO

Kinked-stepped, high Miller index surfaces of metal crystals are chiral and, therefore, exhibit enantiospecific properties. Previous temperature-programmed desorption (TPD) spectra have shown that the desorption energies of R-3-methylcyclohexanone (R-3-MCHO) on the chiral Cu(643)(R) and Cu(643)(S) surfaces are enantiospecific (J. Am. Chem. Soc. 2002, 124, 2384). Here, a comparison of the TPD spectra from Cu(111), Cu(221), Cu(533), Cu(653)(R&S), and Cu(643)(R&S) surfaces reveals that the enantiospecific desorption occurs from the chiral kink sites on the Cu(643) surfaces. Titration of the chiral kink sites with I atoms confirms this assignment of desorption features in the TPD spectra. Finally, the enantiospecific difference in the desorption energies of R- and S-3-MCHO has been used as the basis for demonstration of an enantioselective, kinetic separation of racemic 3-MCHO into its purified components during adsorption and desorption on the Cu(643)(R&S) surfaces.


Assuntos
Cobre/química , Cicloexanonas/química , Adsorção , Sítios de Ligação , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Termodinâmica
11.
J Am Chem Soc ; 124(10): 2384-92, 2002 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11878996

RESUMO

Temperature-programmed desorption (TPD) experiments have been conducted to investigate enantiospecific desorption from chiral single-crystal surfaces. The (643) and (six four three) planes of face-centered cubic metals such as Cu have kinked and stepped structures which are nonsuperimposable mirror images of one another and therefore are chiral. These chiral surfaces are denoted Cu(643)(R) and Cu(643)(S). We have observed that the desorption energies of (R)-3-methylcyclohexanone and (R)- and (S)-propylene oxides from the Cu(643)(R) and Cu(643)(S) surfaces depend on the relative handedness of the adsorbate/substrate combination. Since the (643) surface is comprised of terraces with local (111) orientation which are separated by kinked monatomic steps, it is instructive to perform TPD experiments with these chiral compounds on the achiral Cu(111) surface. These experiments have given some insight into the adsorption sites for the chiral molecules on the Cu(643) surfaces. There are several high-temperature features in the TPD spectra of the chiral compounds that only appear in the spectra from the (643) surfaces and thus are attributed to molecules adsorbed at or near the kinked steps. In addition there are lower temperature desorption features observed on the Cu(643) surfaces which occur in the same temperature range as desorption features observed on the Cu(111) surface. These features observed on the (643) surfaces are attributed to desorption from the flat (111) terraces.


Assuntos
Cobre/química , Adsorção , Cicloexanonas/química , Análise Espectral/métodos , Estereoisomerismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA