Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Res Vet Sci ; 172: 105240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608347

RESUMO

Antimicrobial usage (AMU) could be reduced by differentiating the causative bacteria in cases of clinical mastitis (CM) as either Gram-positive or Gram-negative bacteria or identifying whether the case is culture-negative (no growth, NG) mastitis. Immunoassays for biomarker analysis and a Tandem Mass Tag (TMT) proteomic investigation were employed to identify differences between samples of milk from cows with CM caused by different bacteria. A total of 94 milk samples were collected from cows diagnosed with CM across seven farms in Scotland, categorized by severity as mild (score 1), moderate (score 2), or severe (score 3). Bovine haptoglobin (Hp), milk amyloid A (MAA), C-reactive protein (CRP), lactoferrin (LF), α-lactalbumin (LA) and cathelicidin (CATHL) were significantly higher in milk from cows with CM, regardless of culture results, than in milk from healthy cows (all P-values <0.001). Milk cathelicidin (CATHL) was evaluated using a novel ELISA technique that utilises an antibody to a peptide sequence of SSEANLYRLLELD (aa49-61) common to CATHL 1-7 isoforms. A classification tree was fitted on the six biomarkers to predict Gram-positive bacteria within mastitis severity scores 1 or 2, revealing that compared to the rest of the samples, Gram-positive samples were associated with CRP < 9.5 µg/ml and LF ≥ 325 µg/ml and MAA < 16 µg/ml. Sensitivity of the tree model was 64%, the specificity was 91%, and the overall misclassification rate was 18%. The area under the ROC curve for this tree model was 0.836 (95% bootstrap confidence interval: 0.742; 0.917). TMT proteomic analysis revealed little difference between the groups in protein abundance when the three groups (Gram-positive, Gram-negative and no growth) were compared, however when each group was compared against the entirety of the remaining samples, 28 differentially abundant protein were identified including ß-lactoglobulin and ribonuclease. Whilst further research is required to draw together and refine a suitable biomarker panel and diagnostic algorithm for differentiating Gram- positive/negative and NG CM, these results have highlighted a potential panel and diagnostic decision tree. Host-derived milk biomarkers offer significant potential to refine and reduce AMU and circumvent the many challenges associated with microbiological culture, both within the lab and on the farm, while providing the added benefit of reducing turnaround time from 14 to 16 h of microbiological culture to just 15 min with a lateral flow device (LFD).


Assuntos
Biomarcadores , Mastite Bovina , Leite , Animais , Bovinos , Feminino , Leite/química , Leite/microbiologia , Mastite Bovina/microbiologia , Mastite Bovina/diagnóstico , Biomarcadores/metabolismo , Proteoma , Proteínas do Leite/análise , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Catelicidinas
2.
Cell Physiol Biochem ; 58(1): 83-103, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38459804

RESUMO

BACKGROUND/AIMS: Unrestricted increased table salt (NaCl) intake is associated with oxidative stress and inflammation, leading to endothelial dysfunction and atherosclerosis. However, data on salt-induced immunomodulatory effects in the earliest phase of salt loading are scarce. METHODS: In the present study, an animal model of short-term salt loading was employed, including male Sprague Dawley rats consuming a high-salt diet (HSD; 4% NaCl) or standard laboratory chow (low-salt; LSD; 0.4% NaCl) during a 7-day period. The contribution of angiotensin II (ANGII) suppression was tested by adding a group of rats on a high-salt diet receiving ANGII infusions. Samples of peripheral blood/mesenteric lymph node leukocytes, brain blood vessels, and serum samples were processed for flow cytometry, quantitative real-time PCR, total proteome analysis, and multiplex immunoassay. RESULTS: Data analysis revealed the up-regulation of Il 6 gene in the microcirculation of high-salt-fed rats, accompanied by an increased serum level of TNF-alpha cytokine. The high-salt diet resulted in increased proportion of serum mono-unsaturated fatty acids and saturated fatty acids, reduced levels of linoleic (C18:2 ω-6) and α-linolenic (C18:3 ω-3) acid, and increased levels of palmitoleic acid (C16:1 ω-7). The high-salt diet had distinct, lymphoid compartment-specific effects on leukocyte subpopulations, which could be attributed to the increased expression of salt-sensitive SGK-1 kinase. Complete proteome analysis revealed high-salt-diet-induced vascular tissue remodeling and perturbations in energy metabolism. Interestingly, many of the observed effects were reversed by ANGII supplementation. CONCLUSION: Low-grade systemic inflammation induced by a HSD could be related to suppressed ANGII levels. The effects of HSD involved changes in Th17 and Treg cell distribution, vascular wall remodeling, and a shift in lipid and arachidonic acid metabolism.


Assuntos
Cloreto de Sódio na Dieta , Cloreto de Sódio , Ratos , Masculino , Animais , Cloreto de Sódio/farmacologia , Ratos Sprague-Dawley , Linfócitos T Reguladores , Ácidos Graxos , Proteoma , Angiotensina II/farmacologia , Inflamação , Dieta
3.
Metabolites ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36984805

RESUMO

Comprehensive profiling of serum proteome provides valuable clues of health status and pathophysiological processes, making it the main strategy in biomarker discovery. However, the high dynamic range significantly decreases the number of detectable proteins, obstructing the insights into the underlying biological processes. To circumvent various serum enrichment methods, obtain high-quality proteome wide information using the next-generation proteomic, and study host response in canine leishmaniosis, we applied data-independent acquisition mass spectrometry (DIA-MS) for deep proteomic profiling of clinical samples. The non-depleted serum samples of healthy and naturally Leishmania-infected dogs were analyzed using the label-free 60-min gradient sequential window acquisition of all theoretical mass spectra (SWATH-MS) method. As a result, we identified 554 proteins, 140 of which differed significantly in abundance. Those were included in lipid metabolism, hematological abnormalities, immune response, and oxidative stress, providing valuable information about the complex molecular basis of the clinical and pathological landscape in canine leishmaniosis. Our results show that DIA-MS is a method of choice for understanding complex pathophysiological processes in serum and serum biomarker development.

4.
J Proteomics ; 270: 104735, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36174949

RESUMO

Canine babesiosis is a tick-borne disease caused by Babesia canis, with acute kidney injury as one of the common complications. In the study 8 healthy control dogs and 22 dogs with naturally occurring babesiosis were enrolled, with the aim to analyse differences in serum and urinary proteomes between healthy dogs and dogs with different degree of renal dysfunction in babesiosis using a label-based high-throughput quantitative proteomic approach. In serum, 58 proteins were found differentially abundant between healthy controls and groups of dogs with different degrees of renal dysfunction in babesiosis, while in urine there were 259 differentially abundant proteins. In addition, altered biological pathways were detected in the diseased dogs using bioinformatics tools and validation of several candidate biomarkers was performed. SIGNIFICANCE: The main aim of this comprehensive study was to perform analyses of serum and urinary proteomes of dogs with renal dysfunction in babesiosis compared to healthy dogs using, for the first time, a high-throughput proteomic method and functional enrichment analyses. Serum and urine samples of the same dogs were investigated in order to gain a more complete picture of pathologic changes taking place in renal dysfunction in babesiosis. We highlighted two putative biomarkers validated herein which could be of importance for early diagnosis of renal dysfunction in canine babesiosis, as they are easily accessible from urine and their concentration rises before the appearance of azotaemia: urinary neutrophil gelatinase-associated lipocalin (NGAL) and urinary liver-type fatty acid-binding protein (L-FABP).


Assuntos
Babesiose , Doenças do Cão , Nefropatias , Cães , Animais , Babesiose/complicações , Babesiose/diagnóstico , Proteômica , Proteoma , Doenças do Cão/diagnóstico , Biomarcadores , Nefropatias/diagnóstico , Nefropatias/urina , Nefropatias/veterinária
5.
J Proteomics ; 269: 104726, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36096433

RESUMO

The effect of dietary Spirulina (Arthrospira platensis) and CAZyme supplementation was assessed on the gut of weaned piglets, using an integrated NMR-metabolomics approach combined with Tandem Mass Tag labelled proteomics. Thirty weaned male piglets were assigned to one of the three following diets (n = 10): cereal and soybean meal basal diet (Control), basal diet with 10% Spirulina inclusion (SP) and SP diet supplemented with 0.01% lysozyme (SP + L). The experiment lasted 4 weeks and, upon slaughter, small intestine samples were collected for histological, metabolomic and proteomic analysis. No significant differences were found for the histology and metabolomics analysis between the three experimental groups. Lactate, glutamate, glycine and myo-inositol were the most abundant metabolites. Proteomics results showed 1502 proteins identified in the intestine tissue. A total of 23, 78, 27 differentially abundant proteins were detected respectively for the SP vs. Control, SP + L vs. Control and SP + L vs. SP comparisons. The incorporation of Spirulina and supplementation of lysozyme in the piglet's diets is associated to intestinal proteomic changes. These include increased protein synthesis and abundance of contractile apparatus proteins, related with increased nutrient availability, which has beneficial (increased glucose uptake) and detrimental (increased digesta viscosity) metabolic effects. SIGNIFICANCE: The use of conventional feedstuffs becomes increasingly prohibitive due to its environmental toll. To increase the sustainability of the livestock sector, novel feedstuffs such as microalgae need to be considered. However, its recalcitrant cell wall has antinutritional effects that can inhibit high dietary inclusion levels. The supplementation with CAZymes is a possible solution to this issue. The small intestine is a central piece in monogastric digestion and of particular importance for the weaned piglet. Studying the effect of dietary Spirulina and CAZyme supplementation on its histomorphology, metabolome and proteome allows studying relevant physiological adaptations to these diets.


Assuntos
Spirulina , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais , Glucose , Glutamatos , Glicina , Inositol , Lactatos , Masculino , Muramidase , Proteoma , Proteômica , Suínos
7.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163517

RESUMO

Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the Babesia genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with Babesia canis using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with B. canis and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host-pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with B. canis infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of B. canis infection.


Assuntos
Babesia/patogenicidade , Babesiose/sangue , Doenças do Cão/parasitologia , Metabolômica/métodos , Animais , Estudos de Casos e Controles , Cromatografia Líquida , Doenças do Cão/sangue , Cães , Cromatografia Gasosa-Espectrometria de Massas , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Espectrometria de Massas em Tandem
8.
J Proteomics ; 254: 104452, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34958965

RESUMO

Canine chronic enteropathy (CCE) is a collective term used to describe a group of idiopathic enteropathies of dogs that result in a variety of clinical manifestations of intestinal dysfunction. Clinical stratification into food-responsive enteropathy (FRE) or non-food responsive chronic inflammatory enteropathy (CIE), is made retrospectively based on response to treatments. Faecal extracts from those with a FRE (n = 5) and those with non-food responsive chronic inflammatory enteropathies (CIE) (n = 6) were compared to a healthy control group (n = 14) by applying TMT-based quantitative proteomic approach. Many of the proteins with significant differential abundance between groups were pancreatic or intestinal enzymes with pancreatitis-associated protein (identified as REG3α) and pancreatic M14 metallocarboxypeptidase proteins carboxypeptidase A1 and B identified as being of significantly increased abundance in the CCE group. The reactome analysis revealed the recycling of bile acids and salts and their metabolism to be present in the FRE group, suggesting a possible dysbiotic aetiology. Several acute phase proteins were significantly more abundant in the CCE group with the significant increase in haptoglobin in the CIE group especially notable. Further research of these proteins is needed to fully assess their clinical utility as faecal biomarkers for differentiating CCE cases. SIGNIFICANCE: The identification and characterisation of biomarkers that differentiate FRE from other forms of CIE would prove invaluable in streamlining clinical decision-making and would avoid costly and invasive investigations and delays in implementing effective treatment. Many of the proteins described here, as canine faecal proteins for the first time, have been highlighted in previous human and murine inflammatory bowl disease (IBD) studies initiating a new chapter in canine faecal biomarker research, where early and non-invasive biomarkers for early clinical stratification of CCE cases are needed. Pancreatitis-associated protein, pancreatic M14 metallocarboxypeptidase along with carboxypeptidase A1 and B are identified as being of significantly increased abundance in the CCE groups. Several acute phase proteins, were significantly more abundant in the CCE group notably haptoglobin in dogs with inflammatory enteropathy. The recognition of altered bile acid metabolism in the reactome analysis in the FRE group is significant in CCE which is a complex condition incorporating of immunological, dysbiotic and faecal bile acid dysmetabolism. Both proteomics and immunoassays will enable the characterisation of faecal APPs as well as other inflammatory and immune mediators, and the utilisation of assays, validated for use in analysis of faeces of veterinary species will enable clinical utilisation of faecal matrix to be fully realised.


Assuntos
Doenças do Cão , Doenças Inflamatórias Intestinais , Animais , Biomarcadores , Doenças do Cão/diagnóstico , Cães , Fezes , Doenças Inflamatórias Intestinais/diagnóstico , Camundongos , Proteômica , Estudos Retrospectivos
9.
Metabolites ; 11(12)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34940600

RESUMO

Dairy cows can suffer from a negative energy balance (NEB) during their transition from the dry period to early lactation, which can increase the risk of postpartum diseases such as clinical ketosis, mastitis, and fatty liver. Zeolite clinoptilolite (CPL), due to its ion-exchange property, has often been used to treat NEB in animals. However, limited information is available on the dynamics of global metabolomics and proteomic profiles in serum that could provide a better understanding of the associated altered biological pathways in response to CPL. Thus, in the present study, a total 64 serum samples were collected from 8 control and 8 CPL-treated cows at different time points in the prepartum and postpartum stages. Labelled proteomics and untargeted metabolomics resulted in identification of 64 and 21 differentially expressed proteins and metabolites, respectively, which appear to play key roles in restoring energy balance (EB) after CPL supplementation. Joint pathway and interaction analysis revealed cross-talks among valproic acid, leucic acid, glycerol, fibronectin, and kinninogen-1, which could be responsible for restoring NEB. By using a global proteomics and metabolomics strategy, the present study concluded that CPL supplementation could lower NEB in just a few weeks, and explained the possible underlying pathways employed by CPL.

10.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769107

RESUMO

Herniation of the intervertebral disc (IVDH) is the most common cause of neurological and intervertebral disc degeneration-related diseases. Since the disc starts to degenerate before it can be observed by currently available diagnostic methods, there is an urgent need for novel diagnostic approaches. To identify molecular networks and pathways which may play important roles in intervertebral disc herniation, as well as to reveal the potential features which could be useful for monitoring disease progression and prognosis, multi-omics profiling, including high-resolution liquid chromatography-mass spectrometry (LC-MS)-based metabolomics and tandem mass tag (TMT)-based proteomics was performed. Cerebrospinal fluid of nine dogs with IVDH and six healthy controls were used for the analyses, and an additional five IVDH samples were used for proteomic data validation. Furthermore, multi-omics data were integrated to decipher a complex interaction between individual omics layers, leading to an improved prediction model. Together with metabolic pathways related to amino acids and lipid metabolism and coagulation cascades, our integromics prediction model identified the key features in IVDH, namely the proteins follistatin Like 1 (FSTL1), secretogranin V (SCG5), nucleobindin 1 (NUCB1), calcitonin re-ceptor-stimulating peptide 2 precursor (CRSP2) and the metabolites N-acetyl-D-glucosamine and adenine, involved in neuropathic pain, myelination, and neurotransmission and inflammatory response, respectively. Their clinical application is to be further investigated. The utilization of a novel integrative interdisciplinary approach may provide new opportunities to apply innovative diagnostic and monitoring methods as well as improve treatment strategies and personalized care for patients with degenerative spinal disorders.


Assuntos
Doenças do Cão/líquido cefalorraquidiano , Deslocamento do Disco Intervertebral/veterinária , Animais , Estudos de Casos e Controles , Cães , Deslocamento do Disco Intervertebral/líquido cefalorraquidiano , Metaboloma , Proteoma , Proteômica
11.
Animals (Basel) ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34573467

RESUMO

Obesity is a common problem in pet dogs, affecting half of the general population in some countries. Excess body weight causes several disorders and has a negative impact on dogs' quality of life. The use of metabolomics allows the identification of metabolite traces from the metabolic pathways involved in pathological processes. This study aimed to evaluate salivary metabolite variations in dogs with obesity. The salivary samples of 19 dogs were analyzed using a targeted metabolomic approach, through which 234 metabolites were quantified. Of these, multivariate analysis identified 27 different metabolites altered in dogs with obesity compared with control dogs. These metabolites were mainly classified as amino acids, glycerides, sphingolipids, glycerophospholipids, and acylcarnitines. Some of the changes in these metabolites reflect the insulin resistance status related to obesity in dogs. Overall, it can be concluded that the salivary metabolome of obese dogs reflects the metabolic changes occurring in obesity and could be a source of potential biomarkers for this complex condition.

12.
Res Vet Sci ; 138: 161-166, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147706

RESUMO

Hyperadrenocorticism (HAC) is one of the most common endocrine diseases in dogs characterized by excessive cortisol production caused by an adrenocorticotropic hormone (ACTH)-secreting tumor, namely pituitary-dependent HAC (PDH) or cortisol-secreting adrenal tumor. Metabolomics presents the ability to identify small molecule metabolites. Thus, the use of metabolomics techniques in canine PDH can provide information about the pathophysiology and metabolic changes in this disease. This study aimed to identify and compare differences in serum metabolites between dogs with PDH and healthy dogs. The metabolomic profile of 20 dogs diagnosed with PDH was compared with 20 healthy dogs using liquid chromatography/mass spectrometry (LC/MS), and metabolite discrimination was performed using partial least squares-discriminant analysis (PLS-DA), the variable important in projection (VIP) and fold changes (FC) group-wise comparisons. The hypergeometric test identified the significantly altered pathways. A total of 21 metabolites were found to be significantly different between the two groups. The major alterations were found in arachidonic and decanoic acid, and phospholipids related to phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI). These metabolites are related to insulin resistance and other complications (i.e. hypertension). Our results indicate that PDH produces changes in serum metabolites of dogs, and the knowledge of these changes can aid to better understanding of pathophysiological processes involved and contribute to potentially detect new biomarkers for this disease.


Assuntos
Hiperfunção Adrenocortical/veterinária , Doenças do Cão/metabolismo , Metaboloma , Hipersecreção Hipofisária de ACTH/veterinária , Soro/química , Hiperfunção Adrenocortical/sangue , Hiperfunção Adrenocortical/metabolismo , Animais , Cromatografia Líquida/veterinária , Doenças do Cão/sangue , Cães , Feminino , Masculino , Espectrometria de Massas/veterinária , Hipersecreção Hipofisária de ACTH/sangue , Hipersecreção Hipofisária de ACTH/metabolismo
13.
J Proteomics ; 244: 104277, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34044168

RESUMO

Bovine mastitis causes changes in the milk and serum proteomes. Here changes in both proteomes caused by naturally occurring subclinical and clinical mastitis have been characterised and quantified. Milk and serum samples from healthy dairy cows (n = 10) were compared to those of cows with subclinical (n = 12) and clinical mastitis (n = 10) using tandem mass tag (TMT) proteomics. Proteins that significantly increased or decreased in milk (n = 237) or serum (n = 117) were quantified and classified by the type of change in subclinical and clinical mastitis. A group of the proteins (n = 38) showed changes in both milk and serum a number of which decreased in the serum but increased in milk, suggesting a particular role in host defence for maintaining and restoring homeostasis during the disease. Proteins affected by bovine mastitis included proteins in host defence and coagulation pathways. Investigation of the modified proteomes in milk and serum was assessed by assays for haptoglobin, serum amyloid A and α1 acid glycoprotein validating the results obtained by quantitative proteomics. Alteration of abundance patterns of milk and serum proteins, together with pathway analysis reveal multiple interactions related to proteins affected by mastitis. Data are available via ProteomeXchange with identifier PXD022595. SIGNIFICANCE: Mastitis is the most serious condition to affect dairy cows and leads to reduced animal welfare as well as having a negative economic effect for the dairy industry. Proteomics has previously identified changes in abundance of milk proteins during mastitis, but there have been few investigations addressing changes that may affect proteins in the blood during the infection. In this study, changes in the abundance of proteins of milk and serum, caused by naturally occurring mastitis have been characterised by proteomics using a quantitative approach and both subclinical and clinical cases of mastitis have been investigated. In both milk and serum, change in individual proteins was determined and classified into varying types of altering abundance, such as increasing in subclinical mastitis, but showing no further increase in clinical mastitis. Of special interest were the proteins that altered in abundance in both milk and serum which either showed similar trends - increasing or decreasing in both biological fluids or showed reciprocal change decreasing in serum but increasing in milk. As well as characterising proteins as potential markers of mastitis and the severity of the disease, these results provide insight into the pathophysiology of the host response to bovine mastitis.


Assuntos
Mastite Bovina , Mastite , Animais , Bovinos , Feminino , Humanos , Leite , Proteínas do Leite , Proteoma
14.
J Proteomics ; 244: 104274, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34023516

RESUMO

Arthrospira platensis (Spirulina) is a microalga with a high content of crude protein. It has a recalcitrant cell wall that limits the accessibility of the animal endogenous enzymes to its intracellular nutrients. Enzymatic supplementation aiming to degrade cell walls could benefit microalgae digestibility. The objective of this study was to evaluate the impact of dietary Spirulina and lysozyme supplementation over the muscle proteome of piglets during the post-weaning stage. Thirty piglets were randomly distributed among three diets: control (no microalga), SP (10% Spirulina) and SP + L (10% Spirulina +0.01% lysozyme). After 4 weeks, they were sacrificed and samples of the longissimus lumborum muscle were taken. The muscle proteome was analysed using a Tandem Mass Tag (TMT)-based quantitative approach. A total of 832 proteins were identified. Three comparisons were computed: SP vs Ctrl, SP + L vs Ctrl and SP + L vs SP. They had ten, four and twelve differentially abundant proteins. Glycogen metabolism and nutrient reserves utilization are increased in the SP piglets. Structural muscle protein synthesis increased, causing higher energy requirements in SP + L piglets. Our results demonstrate the usefulness of proteomics to disclose the effect of dietary microalgae, whilst unveiling putative mechanisms derived from lysozyme supplementation. Data available via ProteomeXchange with identifier PXD024083. SIGNIFICANCE: Spirulina, a microalga, is an alternative to conventional crops which could enhance the environmental sustainability of animal production. Due to its recalcitrant cell wall, its use requires additional measures to prevent anti-nutritional effects on the feeding of piglets in the post-weaning period, during which they endure post-weaning stress. One of such measures could be CAZyme supplementation to help degrade the cell wall during digestion. Muscle proteomics provides insightful data on the effect of dietary microalgae and enzyme activity on piglet metabolism.


Assuntos
Spirulina , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Muramidase , Músculos , Proteoma , Suínos , Desmame
15.
Animals (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946607

RESUMO

The aim of this study was to investigate the changes in the salivary proteome in horses with acute abdominal disease (AAD) using a tandem mass tags (TMT)-based proteomic approach. The saliva samples from eight horses with AAD were compared with six healthy horses in the proteomic study. Additionally, saliva samples from eight horses with AAD and eight controls were used to validate lactoferrin (LF) in saliva. The TMT analysis quantified 118 proteins. Of these, 17 differed significantly between horses with AAD and the healthy controls, 11 being downregulated and 6 upregulated. Our results showed the downregulation of gamma-enteric smooth muscle actin (ACTA2), latherin isoform X1, and LF. These proteins could be closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa. In addition, there was an upregulation of mucin 19 (MUC19) and the serine protease inhibitor Kazal-type 5 (SPINK5) associated with a protective effect during inflammation. The proteins identified in our study could have the potential to be novel biomarkers for diagnosis or monitoring the physiopathology of the disease, especially LF, which decreased in the saliva of horses with AAD and was successfully measured using a commercially available immunoassay.

16.
Theriogenology ; 164: 51-57, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550091

RESUMO

The objective of this study was to study the changes in salivary proteins that occur in the dog after the ejaculation process. Saliva samples from eight dogs before and after induced ejaculation were analyzed by proteomic using Tandem Mass Tag (TMT) labeling and LC-MS/MS analysis. A total of 33 salivary proteins showed significant changes after the ejaculation process. The up-regulated proteins that showed changes of higher magnitude were mucin-7 (MUC-7), peroxiredoxin-4 (PRDX4) and galectin-3 (LEGALS3) whereas proteins such as alpha-1-acid glycoprotein (A1G1) and alpha-1B-glycoprotein (A1BG) were the most down-regulated. MUC-7 and PRDX4 expression in saliva after ejaculation could be associated with the protective "environment" created by the organism to exert pr 3o-fertility activities and antioxidants benefits in spermatozoa. Also LEGALS3 increment could be associated with an improvement of wellbeing and could contribute to a positive global effect in the body. Down-regulations of A1G1 and A1GB proteins found in saliva after ejaculation could be associated with a reduction in systemic inflammation. Overall it can be concluded that, changes in proteins in saliva that are produced after ejaculation can reflect a state of increase immune defenses, improvement of antioxidant status and low inflammation.


Assuntos
Ejaculação , Proteômica , Animais , Cromatografia Líquida/veterinária , Cães , Masculino , Saliva , Proteínas e Peptídeos Salivares , Espectrometria de Massas em Tandem/veterinária
17.
Res Vet Sci ; 136: 6-10, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33550147

RESUMO

Hypothyroidism is one of the most commonly diagnosed endocrine disease in dogs. The clinical signs are caused by a deficiency of the active thyroid hormones triiodothyronine (T3) and thyroxine (T4) and have a negative impact on dog's quality of life. We hypothesized that serum metabolic profile varies between healthy dogs and dogs with hypothyroidism. Twenty serum samples from dogs with hypothyroidism and 20 from healthy dogs were used for untargeted metabolomics analysis performed by LC/MS analysis. Fifteen metabolites showed significant changes between hypothyroid and healthy dogs, being the pentose phosphate pathway (PPP), aminoacyl-tRNA biosynthesis and pyrimidine metabolism the principal pathways altered in hypothyroidism. Specifically, metabolites such as D-gluconic acid and L-Isoleucine may potentially act as biomarkers of disease.


Assuntos
Doenças do Cão/sangue , Hipotireoidismo/veterinária , Animais , Doenças do Cão/diagnóstico , Cães , Feminino , Hipotireoidismo/sangue , Masculino , Metaboloma , Metabolômica , Qualidade de Vida , Tiroxina/sangue , Tri-Iodotironina/sangue
18.
J Proteomics ; 231: 103997, 2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33011347

RESUMO

This prospective study included four dog groups (group A: healthy dogs, groups B: dogs with idiopathic epilepsy under antiepileptic medication (AEM), C: idiopathic epilepsy dogs without AEM administration, D: dogs with structural epilepsy). The purpose of the study was to compare the proteomic profile among the four groups. Samples were analyzed by a quantitative Tandem Mass Tags approach using a Q-Exactive-Plus mass-spectrometer. Identification and relative quantification were performed using Proteome Discoverer, and data were analyzed using R. Gene ontology terms were analyzed based on Canis lupus familiaris database. Data are available via ProteomeXchange with identifier PXD018893. Eighteen proteins were statistically significant among the four groups (P < 0.05). MMP2 and EFEMP2 appeared down-regulated whereas HP and APO-A1 were up-regulated (groups B, D). CLEC3B and PEBP4 were up-regulated whereas APO-A1 was down-regulated (group C). IGLL1 was down-regulated (groups B, C) and up-regulated (group D). EFEMP2 was the only protein detected among the four groups and PEBP4 was significantly different among the epileptic dogs. Western blot and SPARCL immunoassay were used to quantify HP abundance change, validating proteomic analysis. Both, showed good correlation with HP levels identified through proteomic analysis (r = 0.712 and r = 0.703, respectively). SIGNIFICANCE: The proteomic analysis from CSF of dogs with epileptic seizures could reflect that MMP2, HP and APO-A1 may contribute to a blood-brain barrier disruption through the seizure-induced inflammatory process in the brain. MMP2 change may indicate the activation of protective mechanisms within the brain tissue. Antiepileptic medication could influence several cellular responses and alter the CSF proteome composition.


Assuntos
Doenças do Cão , Epilepsia , Animais , Doenças do Cão/tratamento farmacológico , Cães , Estudos Prospectivos , Proteômica , Convulsões/veterinária
19.
Animals (Basel) ; 10(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271797

RESUMO

This study aims to evaluate the changes in salivary and serum proteomes that occur in canine diabetes mellitus type-1 (DM) through a high-throughput quantitative proteomic analysis. The proteomes of 10 paired serum and saliva samples from healthy controls (HC group, n = 5) and dogs with untreated DM (DM group, n = 5) were analyzed using Tandem Mass Tags (TMT)-based proteomic approach. Additionally, 24 serum samples from healthy controls and untreated DM were used to validate haptoglobin in serum. The TMT analysis quantified 767 and 389 proteins in saliva and serum, respectively. Of those, 16 unique proteins in serum and 26 in saliva were differently represented between DM and HC groups. The verification of haptoglobin in serum was in concordance with the proteomic data. Our results pointed out changes in both saliva and serum proteomes that reflect different physiopathological changes in dogs with DM. Although some of the proteins identified here, such as malate dehydrogenase or glyceraldehyde-3-phosphate dehydrogenase, were previously related with DM in dogs, most of the proteins modulated in serum and saliva are described in canine DM for the first time and could be a source of potential biomarkers of the disease. Additionally, the molecular function, biological process, pathways and protein class of the differential proteins were revealed, which could improve the understanding of the disease's pathological mechanisms.

20.
Front Pharmacol ; 11: 1202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973493

RESUMO

Colorectal cancer (CRC) is the third most frequent cancer type in both males and females, with about 35% of patients being diagnosed in stage IV metastatic disease. Despite advancements in treatment, life expectancy in patients with metastatic disease is still not satisfying. Due to frequent drug resistance during conventional and targeted cancer treatments, the development and testing of multi-target therapies is an important research field. Medicinal mushrooms specific isolated compounds as well as complex extract mixtures have been studied in depth, and many mushroom species have been proven to be non-toxic multi-target inhibitors of specific oncogenic pathways, as well as potent immunomodulators. In this study, we have performed a tandem mass tags qualitative and quantitative proteomic analyses of CT26.WT colon cancer tumor tissues from Balb/c mice treated with the studied medicinal mushroom extract mixture, with or without 5-fluorouracil. Besides significantly improved survival, obtained results reveal that Agarikon.1 alone, and in combination with 5-fluorouracil exert their anticancer effects by affecting several fundamental processes important in CRC progression. Bioinformatic analysis of up- and downregulated proteins revealed that ribosomal biogenesis and translation is downregulated in treatment groups, while the unfolded protein response (UPR), lipid metabolism and tricarboxylic acid cycle (TCA) are upregulated. Moreover, we found that many known clinical biomarkers and protein clusters important in CRC progression and prognosis are affected, which are a good basis for an expanded translational study of the herein presented treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA