Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neurophysiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774975

RESUMO

When adult mice are repeatedly exposed to a particular visual stimulus for as little as one hour per day for several days while their visual cortex (V1) is in the high-gain state produced by locomotion, that specific stimulus elicits much stronger responses in V1 neurons for the following several weeks, even when measured in anesthetized animals. Such stimulus-specific enhancement (SSE) is not seen if locomotion is prevented. The effect of locomotion on cortical responses is mediated by vasoactive intestinal peptide (VIP) positive interneurons, which can release both the peptide and the inhibitory neurotransmitter GABA. Previous studies have examined the role of VIP-ergic interneurons, but none have distinguished the individual roles of peptide from GABA release. Here we used genetic ablation to determine which of those molecules secreted by VIP-ergic neurons is responsible for SSE. SSE was not impaired by VIP deletion but was prevented by compromising release of GABA from VIP cells. This finding suggests that SSE may result from Hebbian mechanisms that remain present in adult V1.

2.
Proc Natl Acad Sci U S A ; 121(4): e2317773121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227668

RESUMO

The retina and primary visual cortex (V1) both exhibit diverse neural populations sensitive to diverse visual features. Yet it remains unclear how neural populations in each area partition stimulus space to span these features. One possibility is that neural populations are organized into discrete groups of neurons, with each group signaling a particular constellation of features. Alternatively, neurons could be continuously distributed across feature-encoding space. To distinguish these possibilities, we presented a battery of visual stimuli to the mouse retina and V1 while measuring neural responses with multi-electrode arrays. Using machine learning approaches, we developed a manifold embedding technique that captures how neural populations partition feature space and how visual responses correlate with physiological and anatomical properties of individual neurons. We show that retinal populations discretely encode features, while V1 populations provide a more continuous representation. Applying the same analysis approach to convolutional neural networks that model visual processing, we demonstrate that they partition features much more similarly to the retina, indicating they are more like big retinas than little brains.


Assuntos
Córtex Visual , Animais , Camundongos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Retina/fisiologia , Estimulação Luminosa
3.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425920

RESUMO

The retina and primary visual cortex (V1) both exhibit diverse neural populations sensitive to diverse visual features. Yet it remains unclear how neural populations in each area partition stimulus space to span these features. One possibility is that neural populations are organized into discrete groups of neurons, with each group signaling a particular constellation of features. Alternatively, neurons could be continuously distributed across feature-encoding space. To distinguish these possibilities, we presented a battery of visual stimuli to mouse retina and V1 while measuring neural responses with multi-electrode arrays. Using machine learning approaches, we developed a manifold embedding technique that captures how neural populations partition feature space and how visual responses correlate with physiological and anatomical properties of individual neurons. We show that retinal populations discretely encode features, while V1 populations provide a more continuous representation. Applying the same analysis approach to convolutional neural networks that model visual processing, we demonstrate that they partition features much more similarly to the retina, indicating they are more like big retinas than little brains.

4.
Proc Natl Acad Sci U S A ; 119(42): e2209427119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36227915

RESUMO

Traumatic brain injury (TBI) is a leading cause of long-term neurological disability in the world and the strongest environmental risk factor for the development of dementia. Even mild TBI (resulting from concussive injuries) is associated with a greater than twofold increase in the risk of dementia onset. Little is known about the cellular mechanisms responsible for the progression of long-lasting cognitive deficits. The integrated stress response (ISR), a phylogenetically conserved pathway involved in the cellular response to stress, is activated after TBI, and inhibition of the ISR-even weeks after injury-can reverse behavioral and cognitive deficits. However, the cellular mechanisms by which ISR inhibition restores cognition are unknown. Here, we used longitudinal two-photon imaging in vivo after concussive injury in mice to study dendritic spine dynamics in the parietal cortex, a brain region involved in working memory. Concussive injury profoundly altered spine dynamics measured up to a month after injury. Strikingly, brief pharmacological treatment with the drug-like small-molecule ISR inhibitor ISRIB entirely reversed structural changes measured in the parietal cortex and the associated working memory deficits. Thus, both neural and cognitive consequences of concussive injury are mediated in part by activation of the ISR and can be corrected by its inhibition. These findings suggest that targeting ISR activation could serve as a promising approach to the clinical treatment of chronic cognitive deficits after TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Demência , Animais , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Transtornos da Memória , Camundongos
5.
Elife ; 102021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843585

RESUMO

Visual perception in natural environments depends on the ability to focus on salient stimuli while ignoring distractions. This kind of selective visual attention is associated with gamma activity in the visual cortex. While the nucleus reticularis thalami (nRT) has been implicated in selective attention, its role in modulating gamma activity in the visual cortex remains unknown. Here, we show that somatostatin- (SST) but not parvalbumin-expressing (PV) neurons in the visual sector of the nRT preferentially project to the dorsal lateral geniculate nucleus (dLGN), and modulate visual information transmission and gamma activity in primary visual cortex (V1). These findings pinpoint the SST neurons in nRT as powerful modulators of the visual information encoding accuracy in V1 and represent a novel circuit through which the nRT can influence representation of visual information.


Assuntos
Ritmo Gama/fisiologia , Neurônios/fisiologia , Núcleos Talâmicos/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Somatostatina/metabolismo
6.
Vis Neurosci ; 36: E012, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31840629

RESUMO

The trial-to-trial response variability in sensory cortices and the extent to which this variability can be coordinated among cortical units have strong implications for cortical signal processing. Yet, little is known about the relative contributions and dynamics of defined sources to the cortical response variability and their correlations across cortical units. To fill this knowledge gap, here we obtained and analyzed multisite local field potential (LFP) recordings from visual cortex of turtles in response to repeated naturalistic movie clips and decomposed cortical across-trial LFP response variability into three defined sources, namely, input, network, and local fluctuations. We found that input fluctuations dominate cortical response variability immediately following stimulus onset, whereas network fluctuations dominate the response variability in the steady state during continued visual stimulation. Concurrently, we found that the network fluctuations dominate the correlations of the variability during the ongoing and steady-state epochs, but not immediately following stimulus onset. Furthermore, simulations of various model networks indicated that (i) synaptic time constants, leading to oscillatory activity, and (ii) synaptic clustering and synaptic depression, leading to spatially constrained pockets of coherent activity, are both essential features of cortical circuits to mediate the observed relative contributions and dynamics of input, network, and local fluctuations to the cortical LFP response variability and their correlations across recording sites. In conclusion, these results show how a mélange of multiscale thalamocortical circuit features mediate a complex stimulus-modulated cortical activity that, when naively related to the visual stimulus alone, appears disguised as high and coordinated across-trial response variability.


Assuntos
Potenciais Evocados Visuais/fisiologia , Rede Nervosa/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Tartarugas
7.
Proc Natl Acad Sci U S A ; 116(43): 21812-21820, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591211

RESUMO

The developing brain can respond quickly to altered sensory experience by circuit reorganization. During a critical period in early life, neurons in the primary visual cortex rapidly lose responsiveness to an occluded eye and come to respond better to the open eye. While physiological and some of the molecular mechanisms of this process have been characterized, its structural basis, except for the well-known changes in the thalamocortical projection, remains obscure. To elucidate the relationship between synaptic remodeling and functional changes during this experience-dependent process, we used 2-photon microscopy to image synaptic structures of sparsely labeled layer 2/3 neurons in the binocular zone of mouse primary visual cortex. Anatomical changes at presynaptic and postsynaptic sites in mice undergoing monocular visual deprivation (MD) were compared to those in control mice with normal visual experience. We found that postsynaptic spines remodeled quickly in response to MD, with neurons more strongly dominated by the deprived eye losing more spines. These postsynaptic changes parallel changes in visual responses during MD and their recovery after restoration of binocular vision. In control animals with normal visual experience, the formation of presynaptic boutons increased during the critical period and then declined. MD affected bouton formation, but with a delay, blocking it after 3 d. These findings reveal intracortical anatomical changes in cellular layers of the cortex that can account for rapid activity-dependent plasticity.


Assuntos
Ambliopia/fisiopatologia , Plasticidade Neuronal/fisiologia , Córtex Visual/embriologia , Vias Visuais/embriologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/fisiologia , Privação Sensorial/fisiologia , Visão Binocular/fisiologia , Visão Monocular/fisiologia , Córtex Visual/fisiologia
8.
J Neurosci ; 39(38): 7529-7538, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31391263

RESUMO

Transplantation of even a small number of embryonic inhibitory neurons from the medial ganglionic eminence (MGE) into postnatal visual cortex makes it lose responsiveness to an eye deprived of vision when the transplanted neurons reach the age of the normal critical period of activity-dependent ocular dominance (OD) plasticity. The transplant might induce OD plasticity in the host circuitry or might instead construct a parallel circuit of its own to suppress cortical responses to the deprived eye. We transplanted MGE neurons expressing either archaerhodopsin or channelrhodopsin into the visual cortex of both male and female mice, closed one eyelid for 4-5 d, and, as expected, observed transplant-induced OD plasticity. This plasticity was evident even when the activity of the transplanted cells was suppressed or enhanced optogenetically, demonstrating that the plasticity was produced by changes in the host visual cortex.SIGNIFICANCE STATEMENT Interneuron transplantation into mouse V1 creates a window of heightened plasticity that is quantitatively and qualitatively similar to the normal critical period; that is, short-term occlusion of either eye markedly changes ocular dominance (OD). The underlying mechanism of this process is not known. Transplanted interneurons might either form a separate circuit to maintain the OD shift or might instead trigger changes in the host circuity. We designed experiments to distinguish the two hypotheses. Our findings suggest that while inhibition produced by the transplanted cells triggers this form of plasticity, the host circuity is entirely responsible for maintaining the OD shift.


Assuntos
Dominância Ocular/fisiologia , Interneurônios/transplante , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Neurosci ; 39(14): 2635-2648, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30705101

RESUMO

The maturation of GABAergic inhibitory circuits is necessary for the onset of the critical period for ocular dominance plasticity (ODP) in the postnatal visual cortex (Hensch, 2005; Espinosa and Stryker, 2012). When it is deficient, the critical period does not start. When inhibitory maturation or signaling is precocious, it induces a precocious critical period. Heterochronic transplantation of GABAergic interneuron precursors derived from the medial ganglionic eminence (MGE) can induce a second period of functional plasticity in the visual cortex (Southwell et al., 2010). Although the timing of MGE transplantation-induced plasticity is dictated by the maturation of the transplanted cells, its mechanisms remain largely unknown. Here, we sought to test the effect of blocking vesicular GABA loading and subsequent release by transplanted interneurons on the ability to migrate, integrate, and induce plasticity in the host circuitry. We show that MGE cells taken from male and female donors that lack vesicular GABA transporter (Vgat) expression disperse and differentiate into somatostatin- and parvalbumin-expressing interneurons upon heterochronic transplantation in the postnatal mouse cortex. Although transplanted Vgat mutant interneurons come to express mature interneuron markers and display electrophysiological properties similar to those of control cells, their morphology is significantly more complex. Significantly, Vgat mutant MGE transplants fail to induce ODP, demonstrating the pivotal role of vesicular GABAergic transmission for MGE transplantation-induced plasticity in the postnatal mouse visual cortex.SIGNIFICANCE STATEMENT Embryonic inhibitory neurons thrive when transplanted into postnatal brains, migrating and differentiating in the host as they would have done if left in the donor. Once integrated into the host, these new neurons can have profound effects. For example, in the visual cortex, such neurons induce a second critical period of activity-dependent plasticity when they reach the appropriate stage of development. The cellular mechanism by which these transplanted GABAergic interneurons induce plasticity is unknown. Here, we show that transplanted interneurons that are unable to fill synaptic vesicles with GABA migrate and integrate into the host circuit, but they do not induce a second period of plasticity. These data suggest a role for the vesicular GABA transporter in transplantation-mediated plasticity.


Assuntos
Período Crítico Psicológico , Interneurônios/metabolismo , Interneurônios/transplante , Plasticidade Neuronal/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/biossíntese , Córtex Visual/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Luminosa/métodos , Córtex Visual/crescimento & desenvolvimento
10.
Proc Natl Acad Sci U S A ; 115(44): 11304-11309, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30327345

RESUMO

Assessments of the mouse visual system based on spatial-frequency analysis imply that its visual capacity is low, with few neurons responding to spatial frequencies greater than 0.5 cycles per degree. However, visually mediated behaviors, such as prey capture, suggest that the mouse visual system is more precise. We introduce a stimulus class-visual flow patterns-that is more like what the mouse would encounter in the natural world than are sine-wave gratings but is more tractable for analysis than are natural images. We used 128-site silicon microelectrodes to measure the simultaneous responses of single neurons in the primary visual cortex (V1) of alert mice. While holding temporal-frequency content fixed, we explored a class of drifting patterns of black or white dots that have energy only at higher spatial frequencies. These flow stimuli evoke strong visually mediated responses well beyond those predicted by spatial-frequency analysis. Flow responses predominate in higher spatial-frequency ranges (0.15-1.6 cycles per degree), many are orientation or direction selective, and flow responses of many neurons depend strongly on sign of contrast. Many cells exhibit distributed responses across our stimulus ensemble. Together, these results challenge conventional linear approaches to visual processing and expand our understanding of the mouse's visual capacity to behaviorally relevant ranges.


Assuntos
Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Orientação/fisiologia , Estimulação Luminosa/métodos , Percepção Espacial/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-29094198

RESUMO

The three-layered visual cortex of turtle is characterized by extensive intracortical axonal projections and receives non-retinotopic axonal projections from lateral geniculate nucleus. What spatiotemporal transformation of visual stimuli into cortical activity arises from such tangle of malleable cortical inputs and intracortical connections? To address this question, we obtained band-pass filtered extracellular recordings of neural activity in turtle dorsal cortex during visual stimulation of the retina. We discovered important spatial and temporal features of stimulus-modulated cortical local field potential (LFP) recordings. Spatial receptive fields span large areas of the visual field, have an intricate internal structure, and lack directional tuning. The receptive field structure varies across recording sites in a distant-dependent manner. Such composite spatial organization of stimulus-modulated cortical activity is accompanied by an equally multifaceted temporal organization. Cortical visual responses are delayed, persistent, and oscillatory. Further, prior cortical activity contributes globally to adaptation in turtle visual cortex. In conclusion, these results demonstrate convoluted spatiotemporal transformations of visual stimuli into stimulus-modulated cortical activity that, at present, largely evade computational frameworks.


Assuntos
Tartarugas/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Microeletrodos , Estimulação Luminosa , Retina/fisiologia , Análise Espaço-Temporal , Vias Visuais/fisiologia , Análise de Ondaletas
12.
J Neurophysiol ; 118(6): 3345-3359, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931610

RESUMO

Cortical activity contributes significantly to the high variability of sensory responses of interconnected pyramidal neurons, which has crucial implications for sensory coding. Yet, largely because of technical limitations of in vivo intracellular recordings, the coupling of a pyramidal neuron's synaptic inputs to the local cortical activity has evaded full understanding. Here we obtained excitatory synaptic conductance ( g) measurements from putative pyramidal neurons and local field potential (LFP) recordings from adjacent cortical circuits during visual processing in the turtle whole brain ex vivo preparation. We found a range of g-LFP coupling across neurons. Importantly, for a given neuron, g-LFP coupling increased at stimulus onset and then relaxed toward intermediate values during continued visual stimulation. A model network with clustered connectivity and synaptic depression reproduced both the diversity and the dynamics of g-LFP coupling. In conclusion, these results establish a rich dependence of single-neuron responses on anatomical, synaptic, and emergent network properties. NEW & NOTEWORTHY Cortical neurons are strongly influenced by the networks in which they are embedded. To understand sensory processing, we must identify the nature of this influence and its underlying mechanisms. Here we investigate synaptic inputs to cortical neurons, and the nearby local field potential, during visual processing. We find a range of neuron-to-network coupling across cortical neurons. This coupling is dynamically modulated during visual processing via biophysical and emergent network properties.


Assuntos
Adaptação Fisiológica , Neurônios/fisiologia , Potenciais Sinápticos , Córtex Visual/fisiologia , Animais , Modelos Neurológicos , Vias Neurais/fisiologia , Estimulação Luminosa , Tartarugas , Percepção Visual/fisiologia
13.
J Neurophysiol ; 118(5): 2579-2591, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794194

RESUMO

Bursts of oscillatory neural activity have been hypothesized to be a core mechanism by which remote brain regions can communicate. Such a hypothesis raises the question to what extent oscillations are coherent across spatially distant neural populations. To address this question, we obtained local field potential (LFP) and membrane potential recordings from the visual cortex of turtle in response to visual stimulation of the retina. The time-frequency analysis of these recordings revealed pronounced bursts of oscillatory neural activity and a large trial-to-trial variability in the spectral and temporal properties of the observed oscillations. First, local bursts of oscillations varied from trial to trial in both burst duration and peak frequency. Second, oscillations of a given recording site were not autocoherent; i.e., the phase did not progress linearly in time. Third, LFP oscillations at spatially separate locations within the visual cortex were more phase coherent in the presence of visual stimulation than during ongoing activity. In contrast, the membrane potential oscillations from pairs of simultaneously recorded pyramidal neurons showed smaller phase coherence, which did not change when switching from black screen to visual stimulation. In conclusion, neuronal oscillations at distant locations in visual cortex are coherent at the mesoscale of population activity, but coherence is largely absent at the microscale of the membrane potential of neurons.NEW & NOTEWORTHY Coherent oscillatory neural activity has long been hypothesized as a potential mechanism for communication across locations in the brain. In this study we confirm the existence of coherent oscillations at the mesoscale of integrated cortical population activity. However, at the microscopic level of neurons, we find no evidence for coherence among oscillatory membrane potential fluctuations. These results raise questions about the applicability of the communication through coherence hypothesis to the level of the membrane potential.


Assuntos
Potenciais Evocados Visuais , Potenciais da Membrana , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Tartarugas , Córtex Visual/citologia
14.
J Neurophysiol ; 118(2): 1257-1269, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28592686

RESUMO

Cortical sensory responses are highly variable across stimulus presentations. This variability can be correlated across neurons (due to some combination of dense intracortical connectivity, cortical activity level, and cortical state), with fundamental implications for population coding. Yet the interpretation of correlated response variability (or "noise correlation") has remained fraught with difficulty, in part because of the restriction to extracellular neuronal spike recordings. Here, we measured response variability and its correlation at the most microscopic level of electrical neural activity, the membrane potential, by obtaining dual whole cell recordings from pairs of cortical pyramidal neurons during visual processing in the turtle whole brain ex vivo preparation. We found that during visual stimulation, correlated variability adapts toward an intermediate level and that this correlation dynamic is likely mediated by intracortical mechanisms. A model network with external inputs, synaptic depression, and structure reproduced the observed dynamics of correlated variability. These results suggest that intracortical adaptation self-organizes cortical circuits toward a balanced regime at which correlated variability is maintained at an intermediate level.NEW & NOTEWORTHY Correlated response variability has profound implications for stimulus encoding, yet our understanding of this phenomenon is based largely on spike data. Here, we investigate the dynamics and mechanisms of membrane potential-correlated variability (CC) in visual cortex with a combined experimental and computational approach. We observe a visually evoked increase in CC, followed by a fast return to baseline. Our results further suggest a link between this observation and the adaptation-mediated dynamics of emergent network phenomena.


Assuntos
Adaptação Fisiológica/fisiologia , Adaptação Psicológica/fisiologia , Potenciais da Membrana/fisiologia , Células Piramidais/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Modelos Neurológicos , Técnicas de Patch-Clamp , Estimulação Luminosa , Sinapses/fisiologia , Técnicas de Cultura de Tecidos , Tartarugas
15.
J Neurophysiol ; 115(1): 457-69, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26561602

RESUMO

Local field potential (LFP) recordings from spatially distant cortical circuits reveal episodes of coherent gamma oscillations that are intermittent, and of variable peak frequency and duration. Concurrently, single neuron spiking remains largely irregular and of low rate. The underlying potential mechanisms of this emergent network activity have long been debated. Here we reproduce such intermittent ensemble oscillations in a model network, consisting of excitatory and inhibitory model neurons with the characteristics of regular-spiking (RS) pyramidal neurons, and fast-spiking (FS) and low-threshold spiking (LTS) interneurons. We find that fluctuations in the external inputs trigger reciprocally connected and irregularly spiking RS and FS neurons in episodes of ensemble oscillations, which are terminated by the recruitment of the LTS population with concurrent accumulation of inhibitory conductance in both RS and FS neurons. The model qualitatively reproduces experimentally observed phase drift, oscillation episode duration distributions, variation in the peak frequency, and the concurrent irregular single-neuron spiking at low rate. Furthermore, consistent with previous experimental studies using optogenetic manipulation, periodic activation of FS, but not RS, model neurons causes enhancement of gamma oscillations. In addition, increasing the coupling between two model networks from low to high reveals a transition from independent intermittent oscillations to coherent intermittent oscillations. In conclusion, the model network suggests biologically plausible mechanisms for the generation of episodes of coherent intermittent ensemble oscillations with irregular spiking neurons in cortical circuits.


Assuntos
Potenciais de Ação , Córtex Cerebral/fisiologia , Ritmo Gama , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Animais , Humanos , Interneurônios/fisiologia , Vias Neurais/fisiologia , Células Piramidais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA