Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Dev Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38834071

RESUMO

Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.

2.
Heliyon ; 10(10): e30695, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38770306

RESUMO

Schizophrenia is a syndrome with multiple etiologies, one of which is the potential for an autoimmune disease of the brain such as N-methyl-d-aspartate receptor (NMDAR) encephalitis, which can induce psychosis resembling schizophrenia. Here, we examined anti-neuronal autoantibodies related to psychosis using both cell- (CBA) and tissue-based assays (TBA) in the cerebrospinal fluid (CSF) of patients with chronic schizophrenia and control participants. First, we screened for the antibodies against leucine-rich glioma-inactivated 1 (LGI1), γ-aminobutyric acid B receptor (GABABR), dipeptidyl aminopeptidase-like protein 6 (DPPX), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR1/R2), and contactin-associated protein-like 2 (CASPR2) in 148 patients with schizophrenia. No antibodies were detected. Next, we performed CBA for NMDAR antibodies in 148 patients with schizophrenia and 151 age- and sex-matched controls. Although we detected relatively weak immunoreactivity for NMDAR in the CSFs of two patients with schizophrenia and three controls, no samples were positive when strict criteria were applied. For TBA in the rat hippocampus and cerebellum, we detected positive signals in the CSFs of 13 patients with schizophrenia and eight controls. Positive samples were analyzed for paraneoplastic syndrome and antinuclear antibodies using immunoblotting. The CSFs of nine patients and six controls were positive for dense fine speckle 70 (DFS70) antibodies. Additionally, antibodies against centromere protein (CENP)-A and CENP-B were detected in patients with schizophrenia. Our results suggest that autoantibodies against NMDAR, LG1, GABABR, DPPX, AMPAR1/R2, and CASPR2 are not associated with the pathogenesis of chronic schizophrenia. Moreover, we emphasize the importance of considering the effect of anti-DFS70 antibodies when analyzing autoantibodies in CSF samples. Conclusively, we obtained no evidence suggesting that the most frequent neuronal autoantibodies in the CSF play a role in the pathogenesis of schizophrenia, even in our sample.

3.
Elife ; 122024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529532

RESUMO

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.


Assuntos
Disfunção Cognitiva , Endofenótipos , Animais , Camundongos , Humanos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Lactatos/metabolismo , Concentração de Íons de Hidrogênio
4.
Nat Commun ; 15(1): 458, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302444

RESUMO

In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cerebelo/metabolismo , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo
5.
Genes Cells ; 29(3): 192-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38269481

RESUMO

Low-grade neuroepithelial tumors are major causes of drug-resistant focal epilepsy. Clinically, these tumors are defined as low-grade epilepsy-associated neuroepithelial tumors (LEATs). The BRAF V600E mutation is frequently observed in LEAT and linked to poor seizure outcomes. However, its molecular role in epileptogenicity remains elusive. To understand the molecular mechanism underlying the epileptogenicity in LEAT with the BRAF V600E genetic mutation (BRAF V600E-LEAT), we conducted RNA sequencing (RNA-seq) analysis using surgical specimens of BRAF V600E-LEAT obtained and stored at a single institute. We obtained 21 BRAF V600E-LEAT specimens and 4 control specimens, including 24 from Japanese patients and 1 from a patient of Central Asian origin, along with comprehensive clinical data. We submitted the transcriptome dataset of 21 BRAF V600E-LEAT plus 4 controls, as well as detailed clinical information, to a public database. Preliminary bioinformatics analysis using this dataset identified 2134 differentially expressed genes between BRAF V600E-LEAT and control. Additionally, gene set enrichment analysis provided novel insights into the association between estrogen response-related pathways and the epileptogenicity of BRAF V600E-LEAT patients. Our datasets and findings will contribute toward the understanding of the pathology of epilepsy caused by LEAT and the identification of new therapeutic targets.


Assuntos
Neoplasias Encefálicas , Epilepsia , Neoplasias Neuroepiteliomatosas , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Epilepsia/genética , Epilepsia/complicações , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/metabolismo , Neoplasias Neuroepiteliomatosas/patologia , Transcriptoma , Mutação
6.
Dis Model Mech ; 16(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37415561

RESUMO

Phosphoinositides (PIPs) act as intracellular signaling molecules that regulate various cellular processes. Abnormalities in PIP metabolism cause various pathological conditions, including neurodegenerative diseases, cancer and immune disorders. Several neurological diseases with diverse phenotypes, such as ataxia with cerebellar atrophy or intellectual disability without brain malformation, are caused by mutations in INPP4A, which encodes a phosphoinositide phosphatase. We examined two strains of Inpp4a mutant mice with distinct cerebellar phenotypes: the Inpp4aΔEx1,2 mutant exhibited striatal degeneration without cerebellar atrophy, and the Inpp4aΔEx23 mutant exhibited a severe striatal phenotype with cerebellar atrophy. Both strains exhibited reduced expression of Inpp4a mutant proteins in the cerebellum. N-terminal-truncated Inpp4a proteins were expressed from the Inpp4aΔEx1,2 allele by alternative translation initiation and had phosphatase activity for PI(3,4)P2, whereas the Inpp4a mutant protein encoded by Inpp4aΔEx23 completely lacked phosphatase activity. Our results indicate that the diverse phenotypes observed in Inpp4a-related neurological diseases could be due to the varying protein expression levels and retained phosphatase activity in different Inpp4a variants. These findings provide insights into the role of INPP4A mutations in disease pathogenesis and may help to develop personalized therapy.


Assuntos
Cerebelo , Monoéster Fosfórico Hidrolases , Transdução de Sinais , Animais , Camundongos , Atrofia/patologia , Cerebelo/patologia , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
8.
Dalton Trans ; 52(10): 2956-2965, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36648762

RESUMO

Three cationic dinuclear Au(I) complexes containing acetonitrile (AN) as an ancillary ligand were synthesized: [µ-LMe(AuAN)2]·2BF4 (1), [µ-LEt(AuAN)2]·2BF4 (2), and [µ-LiPr(AuAN)2]·2BF4 (3) (LMe = {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt = {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr = {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene}). The unique structures of complexes 1-3 with two P-Au(I)-AN rods bridged by rigid diphosphine ligands were determined through X-ray analysis. The Au(I)-Au(I) distances observed for complexes 1-3 were as short as 2.9804-3.0457 Å, indicating an aurophilic interaction between two Au(I) atoms. Unlike complexes 2 and 3, complex 1 incorporated CH2Cl2 into the crystals as crystalline solvent molecules. Luminescence studies in the crystalline state revealed that complexes 1 and 2 mainly exhibited bluish-purple phosphorescence (PH) at 293 K: the former had a PH peak wavelength at 415 nm with the photoluminescence quantum yield ΦPL = 0.12, and the latter at 430 nm with ΦPL = 0.13. Meanwhile, complex 3 displayed near-white PH, that is dual PH with two PH bands centered at 425 and 580 nm with ΦPL = 0.44. The PH spectra and lifetimes of complexes 2 and 3 were measured in the temperature range of 77-293 K. The two PH bands observed for complex 3 were suggested to originate from the two emissive excited triplet states, which were in thermal equilibrium. From theoretical calculations, the dual PH observed for complex 3 is explained to occur from the two excited triplet states, T1H and T1L: the former exhibits a high-energy PH band (bluish-purple) and the latter exhibits a low-energy PH band (orange). The T1H state is considered 3ILCT with a structure similar to that of the S0-optimized structure. Conversely, the T1L state is assumed to be a 3MLCT with a T1-optimized structure, which has a short Au(I)-Au(I) bond and two bent rods (Au-AN). The thermal equilibrium between the two excited states is discussed based on computational calculations and photophysical data in the temperature range of 77-293 K. With regard to the crystal of complex 1, we were unable to precisely measure the temperature-dependent emission spectra and lifetimes, particularly at low temperatures, because the cooled crystals became irreversibly turbid over time.

9.
Prog Neurobiol ; 216: 102288, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654209

RESUMO

Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Éxons , Camundongos , Distrofia Muscular de Duchenne/genética , Comportamento Social
10.
Front Behav Neurosci ; 16: 910461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722192

RESUMO

In addition to the well-known motor control, the cerebellum has recently been implicated in memory, cognition, addiction, and social behavior. Given that the cerebellum contains more neurons than the cerebral cortex and has tight connections to the thalamus and brainstem nuclei, it is possible that the cerebellum also regulates sleep/wakefulness. However, the role of the cerebellum in sleep was unclear, since cerebellar lesion studies inevitably involved massive inflammation in the adjacent brainstem, and sleep changes in lesion studies were not consistent with each other. Here, we examine the role of the cerebellum in sleep and wakefulness using mesencephalon- and rhombomere 1-specific Ptf1a conditional knockout (Ptf1a cKO) mice, which lack the cerebellar cortex and its related structures, and exhibit ataxic gait. Ptf1a cKO mice had similar wake and non-rapid eye movement sleep (NREMS) time as control mice and showed reduced slow wave activity during wakefulness, NREMS and REMS. Ptf1a cKO mice showed a decrease in REMS time during the light phase and had increased NREMS delta power in response to 6 h of sleep deprivation, as did control mice. Ptf1a cKO mice also had similar numbers of sleep spindles and fear memories as control mice. Thus, the cerebellum does not appear to play a major role in sleep-wake control, but may be involved in the generation of slow waves.

11.
Cells ; 11(4)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203375

RESUMO

Transit amplification of neural progenitors/precursors is widely used in the development of the central nervous system and for tissue homeostasis. In most cases, stem cells, which are relatively less proliferative, first differentiate into transit amplifying cells, which are more proliferative, losing their stemness. Subsequently, transit amplifying cells undergo a limited number of mitoses and differentiation to expand the progeny of differentiated cells. This step-by-step proliferation is considered an efficient system for increasing the number of differentiated cells while maintaining the stem cells. Recently, we reported that cerebellar granule cell progenitors also undergo transit amplification in mice. In this review, we summarize our and others' recent findings and the prospective contribution of transit amplification to neural development and evolution, as well as the molecular mechanisms regulating transit amplification.


Assuntos
Cerebelo , Neurogênese , Animais , Encéfalo , Diferenciação Celular/fisiologia , Camundongos , Neurogênese/fisiologia , Estudos Prospectivos
12.
Neuropathology ; 42(2): 104-116, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35199386

RESUMO

Lewy body-related α-synucleinopathy (Lewy pathology) has been reported in patients with myotonic dystrophy (DM) type 1 (DM1), but no detailed report has described the prevalence and extent of its occurrence. We studied consecutive full autopsy cases of DM1 at the National Center of Neurology and Psychiatry (NCNP) Brain Bank for intractable psychiatric and neurological disorders. Thirty-two cases, genetically determined to be DM1 (59.0 ± 8.7 years), obtained from the NCNP Brain Bank, were compared with control cases obtained from the Brain Bank for Aging Research (BBAR) in Japan. The investigated anatomical sites followed the Dementia with Lewy Bodies Consensus Guideline, expanding to the peripheral autonomic nervous system, temporal pole, and occipital cortex, in addition to the olfactory epithelium and spinal cord. Of the 32 patients, 11 (34.4%) had Lewy pathology, with a significantly higher prevalence than that in the control cases from the BBAR (20.1%). Lewy pathology detected in DM1 was widespread, but no macroscopic depigmentation of the substantia nigra was observed in any DM1 case; this was commensurate with the microscopic paucity of Lewy pathology in the substantia nigra and amygdala. Lewy pathology in DM1 does not appear to follow either Braak's ascending paradigm or the olfactory-amygdala extension. Lewy neurites and dots in DM1 were very sparse in the cerebral cortex and distinct from those observed in BBAR control cases. This study was the first demonstration of unique Lewy pathology in DM1 and may contribute to the understanding of the protein propagation hypothesis of Lewy pathology.


Assuntos
Doença por Corpos de Lewy , Distrofia Miotônica , Doença de Parkinson , Encéfalo/patologia , Humanos , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Distrofia Miotônica/patologia , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
13.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35082173

RESUMO

The neuropeptide oxytocin (Oxt) plays important roles in modulating social behaviors. Oxt receptor (Oxtr) is abundantly expressed in the brain and its relationship to socio-behavioral controls has been extensively studied using mouse brains. Several genetic tools to visualize and/or manipulate Oxtr-expressing cells, such as fluorescent reporters and Cre recombinase drivers, have been generated by ES-cell based gene targeting or bacterial artificial chromosome (BAC) transgenesis. However, these mouse lines displayed some differences in their Oxtr expression profiles probably because of the complex context and integrity of their genomic configurations in each line. Here, we apply our sophisticated genome-editing techniques to the Oxtr locus, systematically generating a series of knock-in mouse lines, in which its endogenous transcriptional regulations are intactly preserved and evaluate their expression profiles to ensure the reliability of our new tools. We employ the epitope tagging strategy, with which C-terminally fused tags can be detected by highly specific antibodies, to successfully visualize the Oxtr protein distribution on the neural membrane with super-resolution imaging for the first time. By using T2A self-cleaving peptide sequences, we also induce proper expressions of tdTomato reporter, codon-improved Cre recombinase (iCre), and spatiotemporally inducible Cre-ERT2 in Oxtr-expressing neurons. Electrophysiological recordings from tdTomato-positive cells in the reporter mice support the validity of our tool design. Retro-orbital injections of AAV-PHP.eB vector into the Cre line further enabled visualization of recombinase activities in the appropriate brain regions. Moreover, the first-time Cre-ERT2 line drives Cre-mediated recombination in a spatiotemporally controlled manner on tamoxifen (TMX) administration. These tools thus provide an excellent resource for future functional studies in Oxt-responsive neurons and should prove of broad interest in the field.


Assuntos
Neurônios , Receptores de Ocitocina , Animais , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Reprodutibilidade dos Testes , Comportamento Social
14.
Neurosci Res ; 175: 73-81, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34543692

RESUMO

The mechanistic target of rapamycin (mTOR)-signaling and dihydropyrimidinase-like 2 (DPYSL2), which are increasingly gaining attention as potential therapeutic targets for schizophrenia, are connected via Cap-dependent translation of the 5'TOP motif. We quantified the expression of molecules constituting the mTOR-signaling and DPYSL2 in the prefrontal cortex (PFC) and superior temporal gyrus (STG) of postmortem brain tissue samples from 24 patients with schizophrenia and 32 control individuals and conducted association analysis to examine abnormal regulation of DPYSL2 expression by the mTOR-signaling in schizophrenia. The average ribosomal protein S6 (S6) levels in the PFC and STG were lower in patients with schizophrenia (p < 0.01). DPYSL2 expression showed a significant positive correlation with phospho-S6 expression levels, which were effectors of mTOR translational regulation, and the correlation slope between phospho-S6 and DPYSL2 expressions differed between cases and controls. Association analyses of these mTOR-signaling and DPYSL2 alterations with genetic polymorphisms and the clinical profile suggested that certain genetic variants of DPYSL2 require high mTOR-signaling activity. Thus, the findings confirmed decreased S6 expression levels in schizophrenia and supported the relationship between the mTOR-signaling and DPYSL2 via 5'TOP Cap-dependent translation, thus providing insights connecting the two major schizophrenia treatment strategies associated with the mTOR-signaling and DPYSL2.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia , Encéfalo/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
15.
EMBO J ; 40(14): e105712, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34057742

RESUMO

During development, neural progenitors are in proliferative and immature states; however, the molecular machinery that cooperatively controls both states remains elusive. Here, we report that cyclin D1 (CCND1) directly regulates both proliferative and immature states of cerebellar granule cell progenitors (GCPs). CCND1 not only accelerates cell cycle but also upregulates ATOH1 protein, an essential transcription factor that maintains GCPs in an immature state. In cooperation with CDK4, CCND1 directly phosphorylates S309 of ATOH1, which inhibits additional phosphorylation at S328 and consequently prevents S328 phosphorylation-dependent ATOH1 degradation. Additionally, PROX1 downregulates Ccnd1 expression by histone deacetylation of Ccnd1 promoter in GCPs, leading to cell cycle exit and differentiation. Moreover, WNT signaling upregulates PROX1 expression in GCPs. These findings suggest that WNT-PROX1-CCND1-ATOH1 signaling cascade cooperatively controls proliferative and immature states of GCPs. We revealed that the expression and phosphorylation levels of these molecules dynamically change during cerebellar development, which are suggested to determine appropriate differentiation rates from GCPs to GCs at distinct developmental stages. This study contributes to understanding the regulatory mechanism of GCPs as well as neural progenitors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Ciclina D1/metabolismo , Grânulos Citoplasmáticos/metabolismo , Fosforilação/fisiologia , Células-Tronco/metabolismo , Animais , Ciclo Celular/genética , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas Hedgehog/metabolismo , Camundongos , Neurogênese/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição
16.
Cells ; 10(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946570

RESUMO

Fluorescent reporter mouse lines and Cre/Flp recombinase driver lines play essential roles in investigating various molecular functions in vivo. Now that applications of the CRISPR/Cas9 genome-editing system to mouse fertilized eggs have drastically accelerated these knock-in mouse generations, the next need is to establish easier, quicker, and cheaper methods for knock-in donor preparation. Here, we reverify and optimize the phospho-PCR method to obtain highly pure long single-stranded DNAs (ssDNAs) suitable for knock-in mouse generation via genome editing. The sophisticated sequential use of two exonucleases, in which double-stranded DNAs (dsDNAs) amplified by a pair of 5'-phosphorylated primer and normal primer are digested by Lambda exonuclease to yield ssDNA and the following Exonuclease III treatment degrades the remaining dsDNAs, enables much easier long ssDNA productions without laborious gel extraction steps. By microinjecting these donor DNAs along with CRISPR/Cas9 components into mouse zygotes, we have effectively generated fluorescent reporter lines and recombinase drivers. To further broaden the applicability, we have prepared long ssDNA donors in higher concentrations and electroporated them into mouse eggs to successfully obtain knock-in embryos. This classical yet improved method, which is regaining attention on the progress of CRISPR/Cas9 development, shall be the first choice for long donor DNA preparation, and the resulting knock-in lines could accelerate life science research.


Assuntos
DNA de Cadeia Simples/normas , Técnicas de Introdução de Genes/métodos , Animais , Sistemas CRISPR-Cas , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Eletroporação/métodos , Edição de Genes/métodos , Camundongos , Camundongos Transgênicos , Microinjeções/métodos , Reação em Cadeia da Polimerase/métodos , Zigoto/metabolismo
17.
Cancer Discov ; 11(9): 2230-2247, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33879448

RESUMO

Molecular groups of supratentorial ependymomas comprise tumors with ZFTA-RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation-based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histologic features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion-positive tumors. SIGNIFICANCE: ZFTA-RELA fusions are a hallmark feature of supratentorial ependymoma. We find that ZFTA acts as a partner for alternative transcriptional activators in oncogenic fusions of supratentorial tumors with various histologic characteristics. Establishing representative mouse models, we identify potential therapeutic targets shared by ZFTA fusion-positive tumors, such as GLI2.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Proteínas de Ligação a DNA/genética , Ependimoma/genética , Proteínas/genética , Neoplasias Supratentoriais/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ependimoma/patologia , Genômica , Humanos , Camundongos , Neoplasias Supratentoriais/patologia
18.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33762301

RESUMO

Cerebellar granule cells (GCs) are cells which comprise over 50% of the neurons in the entire nervous system. GCs enable the cerebellum to properly regulate motor coordination, learning, and consolidation, in addition to cognition, emotion and language. During GC development, maternal GC progenitors (GCPs) divide to produce not only postmitotic GCs but also sister GCPs. However, the molecular machinery for regulating the proportional production of distinct sister cell types from seemingly uniform GCPs is not yet fully understood. Here we report that Notch signaling creates a distinction between GCPs and leads to their proportional differentiation in mice. Among Notch-related molecules, Notch1, Notch2, Jag1, and Hes1 are prominently expressed in GCPs. In vivo monitoring of Hes1-promoter activities showed the presence of two types of GCPs, Notch-signaling ON and OFF, in the external granule layer (EGL). Single-cell RNA sequencing (scRNA-seq) and in silico analyses indicate that ON-GCPs have more proliferative and immature properties, while OFF-GCPs have opposite characteristics. Overexpression as well as knock-down (KD) experiments using in vivo electroporation showed that NOTCH2 and HES1 are involved cell-autonomously to suppress GCP differentiation by inhibiting NEUROD1 expression. In contrast, JAG1-expressing cells non-autonomously upregulated Notch signaling activities via NOTCH2-HES1 in surrounding GCPs, eventually suppressing their differentiation. These findings suggest that Notch signaling results in the proportional generation of two types of cells, immature and differentiating GCPs, which contributes to the well-organized differentiation of GCs.


Assuntos
Cerebelo , Transdução de Sinais , Animais , Diferenciação Celular , Grânulos Citoplasmáticos , Camundongos , Células-Tronco
19.
Genes Cells ; 26(3): 136-151, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33501714

RESUMO

The molecular mechanisms underlying neurodevelopmental disorders (NDDs) remain unclear. We previously identified Down syndrome cell adhesion molecule like 1 (Dscaml1) as a responsible gene for Ihara epileptic rat (IER), a rat model for human NDDs with epilepsy. However, the relationship between NDDs and DSCAML1 in humans is still elusive. In this study, we screened databases of autism spectrum disorders (ASD), intellectual disability (ID)/developmental disorders (DD) and schizophrenia for genomic mutations in human DSCAML1. We then performed in silico analyses to estimate the potential damage to the mutated DSCAML1 proteins and chose three representative mutations (DSCAML1C729R , DSCAML1R1685* and DSCAML1K2108Nfs*37 ), which lacked a cysteine residue in the seventh Ig domain, the intracellular region and the C-terminal PDZ-binding motif, respectively. In overexpression experiments in a cell line, DSCAML1C729R lost its mature N-glycosylation, whereas DSCAML1K2108Nfs*37 was abnormally degraded via proteasome-dependent protein degradation. Furthermore, in primary hippocampal neurons, the ability of the wild-type DSCAML1 to regulate the number of synapses was lost with all mutant proteins. These results provide insight into understanding the roles of the domains in the DSCAML1 protein and further suggest that these mutations cause functional changes, albeit through different mechanisms, that likely affect the pathophysiology of NDDs.


Assuntos
Moléculas de Adesão Celular/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Animais , Transtorno do Espectro Autista/genética , Adesão Celular , Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo , Feminino , Glicosilação , Hipocampo/patologia , Humanos , Células L , Masculino , Camundongos , Anotação de Sequência Molecular , Proteínas Mutantes/metabolismo , Proteólise , Ratos Wistar , Esquizofrenia/genética , Sinapses/metabolismo
20.
Cells ; 11(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011572

RESUMO

Neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) and intellectual disability (ID), are a large group of neuropsychiatric illnesses that occur during early brain development, resulting in a broad spectrum of syndromes affecting cognition, sociability, and sensory and motor functions. Despite progress in the discovery of various genetic risk factors thanks to the development of novel genomics technologies, the precise pathological mechanisms underlying the onset of NDDs remain elusive owing to the profound genetic and phenotypic heterogeneity of these conditions. Autism susceptibility candidate 2 (AUTS2) has emerged as a crucial gene associated with a wide range of neuropsychological disorders, such as ASD, ID, schizophrenia, and epilepsy. AUTS2 has been shown to be involved in multiple neurodevelopmental processes; in cell nuclei, it acts as a key transcriptional regulator in neurodevelopment, whereas in the cytoplasm, it participates in cerebral corticogenesis, including neuronal migration and neuritogenesis, through the control of cytoskeletal rearrangements. Postnatally, AUTS2 regulates the number of excitatory synapses to maintain the balance between excitation and inhibition in neural circuits. In this review, we summarize the knowledge regarding AUTS2, including its molecular and cellular functions in neurodevelopment, its genetics, and its role in behaviors.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Animais , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Neurogênese/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA