Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Breed Sci ; 73(3): 332-342, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840983

RESUMO

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.

2.
Plants (Basel) ; 12(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631182

RESUMO

Genome sequencing is important for discovering critical genes in crops and improving crop breeding efficiency. Generally, fresh, young leaves are used for DNA extraction from plants. However, seeds, the storage form, are more efficient because they do not require cultivation and can be ground at room temperature. Yet, only a few DNA extraction kits or methods suitable for seeds have been developed to date. In this study, we introduced an improved (IMP) Boom method that is relatively low-cost, simple to operate, and yields high-quality DNA that can withstand long-read sequencing. The method successfully extracted approximately 8 µg of DNA per gram of seed weight from soybean seeds at an average concentration of 48.3 ng/µL, approximately 40-fold higher than that extracted from seeds using a common extraction method kit. The A260/280 and A260/230 values of the DNA were 1.90 and 2.43, respectively, which exceeded the respective quality thresholds of 1.8 and 2.0. The DNA also had a DNA integrity number value (indicating the degree of DNA degradation) of 8.1, higher than that obtained using the kit and cetyltrimethylammonium bromide methods. Furthermore, the DNA showed a read length N50 of 20.96 kbp and a maximum read length of 127.8 kbp upon long-read sequencing using the Oxford Nanopore sequencer, with both values being higher than those obtained using the other methods. DNA extracted from seeds using the IMP Boom method showed an increase in the percentage of the nuclear genome with a decrease in the relative ratio of chloroplast DNA. These results suggested that the proposed IMP Boom method can extract high-quality and high-concentration DNA that can be used for long-read sequencing, which cannot be achieved from plant seeds using other conventional DNA extraction methods. The IMP Boom method could also be adapted to crop seeds other than soybeans, such as pea, okra, maize, and sunflower. This improved method is expected to improve the efficiency of various crop-breeding operations, including seed variety determination, testing of genetically modified seeds, and marker-assisted selection.

3.
Plants (Basel) ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890474

RESUMO

Induced mutation is a viable breeding strategy that is widely utilized in the development of elite plant varieties. We aimed to improve a variety of edamame by constructing novel mutant populations using the ethyl methanesulfonate in soybeans (Glycine max (L.) Merr.). In the M2 population, the flowering stage showed a considerable standard deviation compared to the wild type, confirming that the mutant populations had the expected DNA mutations. To identify the DNA mutations in the mutant populations, we used the targeting induced local lesions in genomes (TILLING) method, which is a reverse genetic method, to search for soybean flowering-related gene mutants. A total of 30 mutants from E1, E3, E4, and PhyA1 genes, which are known to be highly effective genes, or their homologous gene for flowering and maturation found in soybean quantitative trait locus analyses were isolated from our TILLING screening. Among these mutants, there were eleven nonsynonymous substitution mutants, one nonsense mutant, and two single nucleotide deletion mutants that could be expected to reduce or eliminate gene function. The e1, e3, and e4 mutants obtained in this study flowered considerably earlier than the wild type. In particular, the e1 mutant with a nonsynonymous substitution flowered approximately 1 month after sowing regardless of the sowing date, and its harvest date was approximately 1 month earlier than that of the wild type. Mutations identified using the TILLING method could not only be used as gel-based DNA markers with the same manipulation method, but the mutations could also be detected as DNA markers by the high-resolution melting method. These results indicate that mutations achieved without chromosome modification by crossbreeding are effective for early and practical improvement of superior varieties and that efficient selection of mutants by reverse genetics is an effective method for the identification of genetic modifications. The edamame mutant populations developed in this study are believed to possess various useful alleles which may be applicable in the search for mutations that lead to improved edamame yield and eating quality beyond the flowering stage.

4.
Breed Sci ; 68(2): 200-209, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29875603

RESUMO

Seed dormancy is important in rice breeding because it confers resistance to pre-harvest sprouting (PHS). To detect quantitative trait loci (QTLs) for pre-harvest sprouting resistance, we used chromosome segment substitution lines (CSSLs) derived from a cross between the Japanese upland rice cultivar 'Owarihatamochi' and the lowland rice cultivar 'Koshihikari'. In the CSSLs, several chromosomal regions were associated with PHS resistance. Among these, the chromosome 9 segment from 'Owarihatamochi' had the greatest association with increased PHS resistance. Further QTL analysis using an advanced backcross population (BC4F2) derived from a 'Koshihikari' × 'Owarihatamochi' cross revealed two putative QTLs, here designated qSDR9.1 (Seed dormancy 9.1) and qSDR9.2, on chromosome 9. The 'Owarihatamochi' alleles of the two QTLs reduced germination. Further fine mapping revealed that qSDR9.1 and qSDR9.2 were located within 4.1-Mb and 2.3-Mb intervals (based on the 'Nipponbare' reference genome sequence) defined by the simple sequence repeat marker loci RM24039 and RM24260 and Indel_2 and RM24540, respectively. We thus identified two QTLs for PHS resistance in 'Owarihatamochi', even though resistance levels are relatively low in this cultivar. This unexpected finding suggests the advantages of using CSSLs for QTL detection.

5.
Plant Physiol ; 170(2): 653-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26668331

RESUMO

We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing.


Assuntos
DNA Ligases/metabolismo , Oryza/enzimologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligases/genética , DNA de Plantas/genética , Mutagênese Sítio-Dirigida , Mutação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
6.
BMC Plant Biol ; 15: 115, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25953146

RESUMO

BACKGROUND: Heading date, a crucial factor determining regional and seasonal adaptation in rice (Oryza sativa L.), has been a major selection target in breeding programs. Although considerable progress has been made in our understanding of the molecular regulation of heading date in rice during last two decades, the previously isolated genes and identified quantitative trait loci (QTLs) cannot fully explain the natural variation for heading date in diverse rice accessions. RESULTS: To genetically dissect naturally occurring variation in rice heading date, we collected QTLs in advanced-backcross populations derived from multiple crosses of the japonica rice accession Koshihikari (as a common parental line) with 11 diverse rice accessions (5 indica, 3 aus, and 3 japonica) that originate from various regions of Asia. QTL analyses of over 14,000 backcrossed individuals revealed 255 QTLs distributed widely across the rice genome. Among the detected QTLs, 128 QTLs corresponded to genomic positions of heading date genes identified by previous studies, such as Hd1, Hd6, Hd3a, Ghd7, DTH8, and RFT1. The other 127 QTLs were detected in different chromosomal regions than heading date genes. CONCLUSIONS: Our results indicate that advanced-backcross progeny allowed us to detect and confirm QTLs with relatively small additive effects, and the natural variation in rice heading date could result from combinations of large- and small-effect QTLs. We also found differences in the genetic architecture of heading date (flowering time) among maize, Arabidopsis, and rice.


Assuntos
Ecótipo , Flores/genética , Flores/fisiologia , Oryza/genética , Oryza/fisiologia , Alelos , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Modelos Genéticos , Fotoperíodo , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
7.
Breed Sci ; 64(4): 371-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25914592

RESUMO

Soybean (Glycine max (L.) Merr.) oil typically contains 8% α-linolenic acid that is highly unstable and easily oxidized. This property is undesirable in many food and industrial applications. Genetic strategies for reducing α-linolenic acid content would enhance the commercial value. However, genetic resources for low α-linolenic acid content are limited among natural soybean variations. Microsomal omega-3-fatty acid desaturase (FAD3) is responsible for the synthesis of α-linolenic acid in the polyunsaturated fatty acid pathway. There are four FAD3 homologs (Glyma02g39230, Glyma11g27190, Glyma14g37350 and Glyma18g06950) in the soybean genome. While non-functional alleles have been reported for Glyma02g39230 (GmFAD3-1a) and Glyma14g37350 (GmFAD3-1b), little variation is seen in Glyma18g06950 (GmFAD3-2a). We isolated seven mutant GmFAD3-2a alleles, each containing a single-nucleotide substitution, from 39,100 independent mutant lines by using targeting induced local lesions in genomes (TILLING). Analysis of GmFAD3-2a transcripts and enzyme activities revealed that one missense mutant, 'P1-A9', contains a non-functional allele of GmFAD3-2a. By combining three non-functional alleles (GmFAD3-1a, GmFAD3-1b, and GmFAD3-2a), we generated soybean lines containing <2% α-linolenic acid in their seeds. The reverse-genetics-based development of novel mutant alleles in the fatty acid metabolic pathway will allow the improvement of soybean with better oil quality through conventional breeding.

8.
Breed Sci ; 61(5): 631-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136502

RESUMO

Palmitic acid is the most abundant (approx. 11% of total fatty acids) saturated fatty acid in conventional soybean seed oil. Increasing the saturated acid content of soybean oil improves its oxidative stability and plasticity. We have developed three soybean mutants with high palmitic acid content by X-ray irradiation. In this study, we successfully identified the mutated sites of two of these high-palmitic-acid mutants, J10 and M22. PCR-based mutant analysis revealed that J10 has a 206,203-bp-long deletion that includes the GmKASIIA gene and 16 other predicted genes, and M22 has a 26-bp-long deletion in the sixth intron of GmKASIIB. The small deletion in M22 causes mis-splicing of GmKASIIB transcripts, which should result in nonfunctional products. In addition, we designed co-dominant marker sets for these mutant alleles and confirmed the association of genotypes and palmitic acid contents in F(2) seeds of J10 X M22. This information will be useful in breeding programs to develop novel soybean cultivars with improved palmitic acid content. However, in the third mutant, KK7, we found no polymorphism in either GmKASIIA or GmKASIIB, which suggests that several unknown genes in addition to GmKASIIA and GmKASIIB may be involved in elevating the palmitic acid content of soybean seed oil.

9.
Theor Appl Genet ; 124(5): 893-902, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22105913

RESUMO

Seed dormancy--the temporary failure of a viable seed to germinate under favorable conditions--is a complex characteristic influenced by many genes and environmental factors. To detect the genetic factors associated with seed dormancy in rice, we conducted a QTL analysis using chromosome segment substitution lines (CSSLs) derived from a cross between Nona Bokra (strong dormancy) and Koshihikari (weak dormancy). Comparison of the levels of seed dormancy of the CSSLs and their recurrent parent Koshihikari revealed that two chromosomal regions-on the short arms of chromosomes 1 and 6-were involved in the variation in seed dormancy. Further genetic analyses using an F(2) population derived from crosses between the CSSLs and Koshihikari confirmed the allelic differences and the chromosomal locations of three putative QTLs: Sdr6 on chromosome 1 and Sdr9 and Sdr10 on chromosome 6. The Nona Bokra alleles of the three QTLs were associated with decreased germination rate. We discuss the physiological features of the CSSLs and speculate on the possible mechanisms of dormancy in light of the newly detected QTLs.


Assuntos
Oryza/genética , Dormência de Plantas/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Primers do DNA/genética , Repetições de Microssatélites/genética , Dormência de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
10.
Amino Acids ; 38(3): 729-38, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19333721

RESUMO

Flooding inducible proteins were analyzed using a proteomic technique to understand the mechanism of soybean response to immersion in water. Soybeans were germinated for 2 days, and then subjected to flooding for 2 days. Proteins were extracted from root and hypocotyl, separated by two-dimensional polyacrylamide gel electrophoresis, stained by Coomassie brilliant blue, and analyzed by protein sequencing and mass spectrometry. Out of 803 proteins, 21 proteins were significantly up-regulated, and seven proteins were down-regulated by flooding stress. Of the total, 11 up-regulated proteins were classified as related to protein destination/storage and three proteins to energy, while four down-regulated proteins were related to protein destination/storage and three proteins to disease/defense. The expression of 22 proteins significantly changed within 1 day after flooding stress. The effects of flooding, nitrogen substitution without flooding, or flooding with aeration were analyzed for 1-4 days. The expression of alcohol dehydrogenase increased remarkably by nitrogen substitution compared to flooding. The expression of many proteins that changed due to flooding showed the same tendencies observed for nitrogen substitution; however, the expression of proteins classified into protein destination/storage did not.


Assuntos
Inundações , Glycine max/metabolismo , Hipocótilo/metabolismo , Raízes de Plantas/metabolismo , Proteoma/análise , Estresse Fisiológico , Hipóxia Celular , Produtos Agrícolas , Regulação para Baixo , Hipocótilo/anatomia & histologia , Imersão/efeitos adversos , Nitrogênio/metabolismo , Oxigênio/metabolismo , Mapeamento de Peptídeos , Proteínas de Plantas/análise , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/anatomia & histologia , Análise de Sequência de Proteína , Glycine max/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Regulação para Cima , Água/efeitos adversos
11.
J Plant Res ; 120(5): 619-28, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17712525

RESUMO

Increased expression of the auxin-inducible gene PsIAA4/5 was observed in the elongated side of epicotyls in early growth stages of etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown in a horizontal or an inclined position under 1 g conditions. Under simulated microgravity conditions on a 3D clinostat, accumulation of PsIAA4/5 mRNA was found throughout epicotyls showing automorphosis. Polar auxin transport in the proximal side of epicotyls changed when the seedlings were grown in a horizontal or an inclined position under 1 g conditions, but that under clinorotation did not, regardless of the direction of seed setting. Accumulation of PsPIN1 and PsPIN2 mRNAs in epicotyls was affected by gravistimulation, but not by clinorotation. Under 1 g conditions, auxin-transport inhibitors made epicotyls of seedlings grown in a horizontal or inclined position grow toward the proximal direction to cotyledons. These inhibitors led to epicotyl bending toward the cotyledons in seedlings grown in an inclined position under clinorotation. Polar auxin transport, as well as growth direction, of epicotyls of the agravitropic mutant ageotropum did not respond to various gravistimulation. These results suggest that alteration of polar auxin transport in the proximal side of epicotyls regulates the graviresponse of pea epicotyls.


Assuntos
Gravitropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Ausência de Peso , Proteínas de Transporte/metabolismo , Gravitropismo/genética , Ácidos Indolacéticos/antagonistas & inibidores , Mutação , Pisum sativum/genética , Pisum sativum/metabolismo , Brotos de Planta/metabolismo , RNA Mensageiro/metabolismo
12.
Plant Cell Physiol ; 47(11): 1496-508, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17008444

RESUMO

Gravity-controlled transport of auxin was studied for a negative gravitropic response in the early growth stage of etiolated pea (Pisum sativum L. cv. Alaska) seedlings, in which epicotyl bending was observed near the cotyledon nodes of the seedlings grown continuously from seeds germinated in a horizontal or an inclined position. Increased expression of an auxin-inducible gene, PsIAA4/5, was observed in the elongated side of epicotyls grown in a horizontal or an inclined position. Regardless of the conditions of seed germination, polar auxin transport in the proximal side of the first internodes of the seedlings was significantly higher than in the distal side. Polar auxin transport in the proximal side of epicotyls grown in an inclined position was significantly lower than in those grown in a horizontal position. In contrast, lateral auxin distribution from the proximal to distal sides in epicotyls grown in an inclined position was significantly higher than in epicotyls grown in a horizontal position. Accumulation of PsPIN1 mRNA encoding a putative auxin efflux facilitator, which was observed in vascular tissue, cortex and epidermis in the proximal and distal sides of epicotyls, was markedly influenced by gravistimulation. These results strongly suggest that gravistimulation induces changeable polar auxin transport and one-way lateral auxin distribution in epicotyls as well as asymmetric auxin accumulation in the proximal and distal sides of epicotyls, resulting in a negative gravitropic response of epicotyls in the early growth stage of pea seedlings.


Assuntos
Cotilédone/embriologia , Gravitação , Gravitropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Pisum sativum/embriologia , Pisum sativum/fisiologia , Plântula/embriologia , Transporte Biológico/efeitos dos fármacos , Cotilédone/citologia , Cotilédone/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gravitropismo/efeitos dos fármacos , Ácidos Indolacéticos/antagonistas & inibidores , Morfogênese/efeitos dos fármacos , Pisum sativum/efeitos dos fármacos , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/citologia , Plântula/efeitos dos fármacos , Ácidos Tri-Iodobenzoicos/farmacologia
13.
Physiol Plant ; 123(4): 467-74, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15844285

RESUMO

Etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown under microgravity conditions in space show automorphosis: bending of epicotyls, inhibition of hook formation and changes in root growth direction. In order to determine the mechanisms of microgravity conditions that induce automorphosis, we used a three-dimensional clinostat and obtained the successful induction of automorphosis-like growth of etiolated pea seedlings. Kinetic studies revealed that epicotyls bent at their basal region towards the clockwise direction far from the cotyledons from the vertical line (0 degrees) at approximately 40 degrees in seedlings grown both at 1 g and in the clinostat within 48 h after watering. Thereafter, epicotyls retained this orientation during growth in the clinostat, whereas those at 1 g changed their growth direction against the gravity vector and exhibited a negative gravitropic response. On the other hand, the plumular hook that had already formed in the embryo axis tended to open continuously by growth at the inner basal portion of the elbow; thus, the plumular hook angle initially increased; this was followed by equal growth on the convex and concave sides at 1 g, resulting in normal hook formation; in contrast, hook formation was inhibited on the clinostat. The automorphosis-like growth and development of etiolated pea seedlings was induced by auxin polar transport inhibitors (9-hydroxyfluorene-9-carboxylic acid, N-(1-naphthyl)phthalamic acid and 2,3,5-triiodobenzoic acid), but not by anti-auxin (p-chlorophenoxyisobutyric acid) at 1 g. An ethylene biosynthesis inhibitor, 1-aminooxyacetic acid, inhibited hook formation at 1 g, and ethylene production of etiolated seedlings was suppressed on the clinostat. Clinorotation on the clinostat strongly reduced the activity of auxin polar transport of epicotyls in etiolated pea seedlings, similar to that observed in space experiments (Ueda J, Miyamoto K, Yuda T, Hoshino T, Fujii S, Mukai C, Kamigaichi S, Aizawa S, Yoshizaki I, Shimazu T, Fukui K (1999) Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment. J Plant Res 112: 487492). These results suggest that clinorotation on a three-dimensional clinostat is a valuable tool for simulating microgravity conditions, and that automorphosis of etiolated pea seedlings is induced by the inhibition of auxin polar transport and ethylene biosynthesis.


Assuntos
Transporte Biológico/efeitos dos fármacos , Gravitropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Voo Espacial , Simulação de Ausência de Peso , Ausência de Peso , Ácido Amino-Oxiacético/farmacologia , Ácido Clofíbrico/farmacologia , Inibidores Enzimáticos/farmacologia , Etilenos/metabolismo , Pisum sativum/efeitos dos fármacos , Ftalimidas/farmacologia , Rotação , Plântula/efeitos dos fármacos , Ácidos Tri-Iodobenzoicos/farmacologia
14.
Biol Sci Space ; 18(3): 94-5, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15858337

RESUMO

On STS-95 space experiment, etiolated pea (Pisum sativum L. cv. Alaska) seedlings showed automorphosis and activities of auxin polar transport in epicotyls were substantially suppressed. These results together with the fact that inhibitors of auxin polar transport induced automorphosis-like growth and development strongly suggested that there are close relationships between automorphosis and auxin polar transport in etiolated pea seedlings. In order to know how gravistimuli control auxin polar transport at molecular levels, we isolated novel cDNAs of PsPIN2 and PsAUX1 encoding putative auxin efflux and influx carriers from etiolated pea seedlings. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857) and AtPINs, and between PsAUX1 and AtAUX1. Exogenously applied auxin substantially enhanced the expression of PsAUX1 and PsPIN2 as well as PsPIN1. Simulated microgravity conditions on a 3-dimensional clinostat remarkably increased gene expression of PsPIN1 and PsAUX1 in the hook and the 1st internode of pea epicotyls, while the increase of expression of PsPIN2 in both organs was not so much. These results suggest that PsPINs and PsAUX1 are auxin-inducible genes, and the expression of PsPINs and PsAUX1 is under the control of gravistimulation. A possible role of these genes in regulating auxin transport relevant to automorphosis of etiolated pea seedlings is also discussed.


Assuntos
Ácidos Indolacéticos/farmacologia , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Reguladores de Crescimento de Plantas/farmacologia , Simulação de Ausência de Peso , Transporte Biológico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Rotação , Voo Espacial , Ausência de Peso
15.
Biol Sci Space ; 17(3): 175-6, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14676360

RESUMO

Etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown under simulated microgravity conditions on a 3-dimensional clinostat showed automorphosis-like growth and development similar to that observed in true microgravity conditions in space. Application of inhibitors of auxin polar transport phenocopied automorphosis-like growth on 1 g conditions, suggesting that automorophosis is closely related to auxin polar transport. Strenuous efforts to know the relationships between automorphosis and auxin polar transport in pea seedlings at molecular bases resulted in successful identification of PsPIN2 and PsAUX1 encoding putative auxin efflux and influx carrier protein, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 and AtPINs, and between PsAUX1 and AtAUX1. Expression of PsPIN1 and PsAUX1 genes in etiolated pea seedlings grown on the clinostat were substantially affected, but that of PsPIN2 was not. Roles of these genes in auxin polar transport and automorphosis of etiolated pea seedlings are also described.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pisum sativum/genética , Simulação de Ausência de Peso , Transporte Biológico , Proteínas de Transporte/metabolismo , Gravitação , Ácidos Indolacéticos/metabolismo , Pisum sativum/metabolismo , Rotação , Plântula/genética , Plântula/metabolismo
16.
Biol Sci Space ; 17(3): 234-5, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14676393

RESUMO

In STS-95 space experiments we have demonstrated that microgravity conditions resulted in automorphosis in etiolated pea (Pisum sativum L. cv. Alaska) seedlings (Ueda et al. 1999). Automorphosis-like growth and development in etiolated pea seedlings were also induced under simulated microgravity conditions on a 3-dimensional (3-D) clinostat, epicotyls being the most oriented toward the direction far from the cotyledons. Detail analysis of epicotyl bending revealed that within 36 h after watering, no significant difference in growth direction of epicotyls was observed in between seedlings grown on the 3-D clinostat and under 1 g conditions, differential growth near the cotyledonary node resulting in epicotyl bending of ca. 45 degrees toward the direction far from the cotyledons. Thereafter epicotyls continued to grow almost straightly keeping this orientation on the 3-D clinostat. On the other hand, the growth direction in etiolated seedlings changed to antigravity direction by negative gravitropic response under 1 g conditions. Automorphological epicotyl bending was also phenocopied by the application of auxin polar transport inhibitors such as 9-hydroxyfluorene-9-carboxylic acid, N-(1-naphtyl)phthalamic acid and 2,3,5-triiodobenzoic acid. These results together with the fact that auxin polar transport activity in etiolated pea epicotyls was substantially reduced in space suggested that reduced auxin polar transport is closely related to automorphosis. Strenuous efforts to learn how gravity contributes to the auxin polar transport in etiolated pea epicotyls in molecular bases resulted in successful identification of PsPIN2 and PsAUX1 encoding putative auxin-efflux and influx carrier proteins, respectively. Based on the results of these gene expression under simulated microgravity conditions, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.


Assuntos
Proteínas de Transporte/metabolismo , Ácidos Indolacéticos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Simulação de Ausência de Peso , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cotilédone/crescimento & desenvolvimento , Genes de Plantas , Gravitação , Gravitropismo/fisiologia , Ácidos Indolacéticos/antagonistas & inibidores , Proteínas de Membrana Transportadoras/metabolismo , Pisum sativum/genética , Pisum sativum/fisiologia , Proteínas de Plantas/metabolismo , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA