Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(28): 36255-36271, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959094

RESUMO

This study delves into enhancing the efficiency and stability of perovskite solar cells (PSCs) by optimizing the surface morphologies and optoelectronic properties of the electron transport layer (ETL) using tungsten (W) doping in zinc oxide (ZnO). Through a unique green synthesis process and spin-coating technique, W-doped ZnO films were prepared, exhibiting improved electrical conductivity and reduced interface defects between the ETL and perovskite layers, thus facilitating efficient electron transfer at the interface. High-quality PSCs with superior ETL demonstrated a substantial 30% increase in power conversion efficiency (PCE) compared to those employing pristine ZnO ETL. These solar cells retained over 70% of their initial PCE after 4000 h of moisture exposure, surpassing reference PSCs by 50% PCE over this period. Advanced numerical multiphysics solvers, employing finite-difference time-domain (FDTD) and finite element method (FEM) techniques, were utilized to elucidate the underlying optoelectrical characteristics of the PSCs, with simulated results corroborating experimental findings. The study concludes with a thorough discussion on charge transport and recombination mechanisms, providing insights into the enhanced performance and stability achieved through W-doped ZnO ETL optimization.

2.
Mater Horiz ; 11(18): 4329-4337, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38919027

RESUMO

Cesium lead iodide bromide (CsPbIBr2) perovskite solar cells (PSCs) have improved stability compared to other perovskite compositions. However, they still face significant challenges due to their poor photovoltaic performance parameters, which limit the devices' power conversion efficiencies (PCEs). This study proposes a novel device design to tailor the potential of CsPbIBr2 PSCs by improving their optoelectronic properties. An advanced 3D multiphysics approach was rigorously used to investigate the optics and electrical properties of the proposed CsPbIBr2 PSCs. This approach combines finite-difference time-domain (FDTD) and finite element method (FEM) techniques with the particle swarm optimization (PSO) algorithm. The outcome from the adapted numerical approach is in good agreement with the experimental results. The optimized CsPbIBr2 PSC demonstrates a promising power conversion efficiency (PCE) of over 16.4%, associated VOC of 1.53 V, FF of 80.6%, and JSC of 13.4 mA cm-2. Therefore, the potential of CsPbIBr2 perovskites could be further explored with continued research and development in material science and device physics.

3.
Materials (Basel) ; 15(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431542

RESUMO

Extensive research on fault diagnosis is essential to detect various faults that occur to different photovoltaic (PV) panels to keep PV systems operating at peak performance. Here, we present an impact analysis of potential induced degradation (PID) on the current-voltage (I-V) characteristics of crystalline silicon (c-Si) solar cells. The impact of parasitic resistances on solar cell performance is highlighted and linked to fault and degradation. Furthermore, a Simulink model for a single solar cell is proposed and used to estimate the I-V characteristics of a PID-affected PV cell based on experimental results attributes. The measured data show that the fill factor (FF) drops by approximately 13.7% from its initial value due to a decrease in shunt resistance (Rsh). Similarly, the simulation results find that the fill factor degraded by approximately 12% from its initial value. The slight increase in measured data could be due to series resistance effects which were assumed to be zero in the simulated data. This study links simulation and experimental work to confirm the I-V curve behavior of PID-affected PV cells, which could help to improve fault diagnosis methods.

4.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234594

RESUMO

Tungsten oxide (WOx) thin films were synthesized through the RF magnetron sputtering method by varying the sputtering power from 30 W to 80 W. Different investigations have been conducted to evaluate the variation in different morphological, optical, and dielectric properties with the sputtering power and prove the possibility of using WOx in optoelectronic applications. An Energy Dispersive X-ray (EDX), stylus profilometer, and atomic force microscope (AFM) have been used to investigate the dependency of morphological properties on sputtering power. Transmittance, absorbance, and reflectance of the films, investigated by Ultraviolet-Visible (UV-Vis) spectroscopy, have allowed for further determination of some necessary parameters, such as absorption coefficient, penetration depth, optical band energy gap, refractive index, extinction coefficient, dielectric parameters, a few types of loss parameters, etc. Variations in these parameters with the incident light spectrum have been closely analyzed. Some important parameters such as transmittance (above 80%), optical band energy gap (~3.7 eV), and refractive index (~2) ensure that as-grown WOx films can be used in some optoelectronic applications, mainly in photovoltaic research. Furthermore, strong dependencies of all evaluated parameters on the sputtering power were found, which are to be of great use for developing the films with the required properties.

5.
ACS Appl Mater Interfaces ; 14(9): 11645-11653, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191665

RESUMO

In this study, optical multispectral sensors based on perovskite semiconductors have been proposed, simulated, and characterized. The perovskite material system combined with the 3D vertical integration of the sensor channels allow for realizing sensors with high sensitivities and a high spectral resolution. The sensors can be applied in several emerging areas, including biomedical imaging, surveillance, complex motion planning of autonomous robots or vehicles, artificial intelligence, and agricultural applications. The sensor elements can be vertically integrated on a readout electronic to realize sensor arrays and multispectral digital cameras. In this study, three- and six-channel vertically stacked perovskite sensors are optically designed, electromagnetically simulated, and colorimetrically characterized to evaluate the color reproduction. The proposed sensors allow for the implementation of snapshot cameras with high sensitivity. The proposed sensor is compared to other sensor technologies in terms of sensitivity and selectivity.

6.
Heliyon ; 7(6): e07228, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189294

RESUMO

BACKGROUND AND AIM: Sphagneticola calendulacea (L.) Pruski (S. calendulacea) is a well-known medicinal plant that is widely used in traditional medicine. This study was conducted to evaluate the antioxidant and antineoplastic properties of S. calendulacea leaf. EXPERIMENTAL PROCEDURE: Methanol was used as a solvent to prepare leaf extract from the dried leaf of S. calendulacea (MESL). We have evaluated the total phenolic and flavonoid contents of MESL, and using five different assays; we have also evaluated the antioxidant property of MESL. In vivo antineoplastic activity of MESL against Ehrlich ascites carcinoma (EAC) cells in experimental mice was also explored. RESULTS: The phytochemical analysis of MESL exhibited the total phenolic, and total flavonoid contents in the dry extracts were 32.86 mg/gm of gallic acid equivalent and 127.26 mg/gm of catechin equivalent, respectively. Moreover, MESL also showed promising scavenging activity in all assays (IC50 value ≥70.5 µg/mL). In the in vivo antineoplastic assay, MESL showed increased EAC cell death at the doses of 50 mg/kg and 100 mg/kg body weight. MESL administration also induced apoptosis of EAC cells, significantly inhibited EAC cell growth, and increased the life span of EAC cell-bearing mice compared to EAC cell-bearing control mice. CONCLUSIONS: All findings of this study suggest potential antioxidant and antineoplastic properties of MESL.

7.
Nanomicro Lett ; 13(1): 36, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34138244

RESUMO

The photovoltaic performance of perovskite solar cells (PSCs) can be improved by utilizing efficient front contact. However, it has always been a significant challenge for fabricating high-quality, scalable, controllable, and cost-effective front contact. This study proposes a realistic multi-layer front contact design to realize efficient single-junction PSCs and perovskite/perovskite tandem solar cells (TSCs). As a critical part of the front contact, we prepared a highly compact titanium oxide (TiO2) film by industrially viable Spray Pyrolysis Deposition (SPD), which acts as a potential electron transport layer (ETL) for the fabrication of PSCs. Optimization and reproducibility of the TiO2 ETL were discreetly investigated while fabricating a set of planar PSCs. As the front contact has a significant influence on the optoelectronic properties of PSCs, hence, we investigated the optics and electrical effects of PSCs by three-dimensional (3D) finite-difference time-domain (FDTD) and finite element method (FEM) rigorous simulations. The investigation allows us to compare experimental results with the outcome from simulations. Furthermore, an optimized single-junction PSC is designed to enhance the energy conversion efficiency (ECE) by > 30% compared to the planar reference PSC. Finally, the study has been progressed to the realization of all-perovskite TSC that can reach the ECE, exceeding 30%. Detailed guidance for the completion of high-performance PSCs is provided.

8.
Environ Manage ; 67(3): 532-552, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33609148

RESUMO

Bangladesh is a country of natural disasters and climatic hazards, which frequently affect its inhabitants' lives and livelihoods. Among the various risks and disasters, floods are the most frequent hazard that makes haor households vulnerable. Therefore, this study was undertaken to estimate livelihood vulnerability to flooding within the flood-prone haor ecosystem in Bangladesh. Primary data were collected from 100 haor households each from Kishoreganj, Netrokona, and Sunamganj districts (N = 300) by applying a multistage random sampling technique. Data were collected through face-to-face interviews using a pretested structured questionnaire. The Livelihood Vulnerability Index (LVI) and the Intergovernmental Panel on Climate Change (IPCC) framework of vulnerability were applied to compare vulnerabilities among the selected haor-based communities. The empirical results revealed that haor households in Sunamganj district were more vulnerable to flood hazard and natural disaster in terms of food, water, and health than households in the other two districts. Taking into account the major components of the LVI, the IPCC framework of vulnerability indicated that households in Sunamganj district were the most vulnerable due to their lowest adaptive capacity and highest sensitivity and exposure. These findings enable policymakers to formulate and implement effective strategies and programs to minimize vulnerability and enhance resilience by improving the livelihoods of the vulnerable haor households of Bangladesh, especially those in Sunamganj district.


Assuntos
Desastres , Inundações , Bangladesh , Mudança Climática , Ecossistema
9.
ACS Appl Mater Interfaces ; 12(42): 47831-47839, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32964715

RESUMO

Color image sensing by a smartphone or digital camera employs sensor elements with an array of color filters for capturing basic blue, green, and red color information. However, the normalized optical efficiency of such color filter-based sensor elements is limited to only one-third. Optical detectors based on perovskites are described, which can overcome this limitation. An efficient color sensor design has been proposed in this study that uses a vertically stacked arrangement of perovskite diodes. As compared to the conventional color filter-based sensors, the proposed sensor structure can potentially reach normalized optical efficiency approaching 100%. In addition, the proposed sensor design does not exhibit color aliasing or color Moiré effects, which is one of the main limitations for the filter-based sensors. Furthermore, up to our knowledge, for the first time, it could be theoretically shown that both vertically arranged sensor and conventional color filter-based sensor provide almost comparable color errors. The optical properties of the perovskite materials are determined by optical measurements in combination with an energy shift model. The optics of the stacked perovskite sensors is investigated by threedimensional finite-difference timedomain simulations. Finally, colorimetric characterization was carried out to determine the color error of the sensors.

10.
Patholog Res Int ; 2012: 908106, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792510

RESUMO

Background. The aim of this study is to assess the role of multiparameter analysis of silver (Ag)-stained nucleolar organizer regions (AgNORs) technique on aspiration smears of thyroid swellings to distinguish between benign and malignant lesions. Materials and Methods. Aspiration smears from 166 cases of thyroid swellings were examined. Diagnosis was confirmed by histology in 61 cases. AgNOR staining was done on FNA smears according to silver-staining protocol proposed by the International Committee for AgNOR quantification. Multiparameter analysis of AgNORs such as mAgNOR, pAgNOR, and AgNOR size grade was done on 50-100 cells under oil immersion lens. Results. AgNOR parameter of benign and malignant thyroid lesions was compared and was found to be statistically significant. Out of 157 satisfactory AgNOR stained cases, 148 (94.3%) were benign lesions and 9 (5.7%) cases were malignant lesions. In AgNOR analysis, sensitivity was found to be 83.33%, specificity 100%, PPV 100%, NPV 98.21%, and accuracy was 98.36%. Conclusions. AgNOR analysis in the FNA smears is a simple, sensitive, and cost-effective method for differentiating benign from malignant thyroid swellings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA