Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Opt Express ; 6(5): 1665-78, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26137371

RESUMO

New optical imaging techniques that provide contrast to study both the anatomy and composition of atherosclerotic plaques can be utilized to better understand the formation, progression and clinical complications of human coronary artery disease. We present a dual-modality fiber-based optical imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques that combines optical coherence tomography (OCT) and two-photon luminescence (TPL) imaging. Experimental results from ex vivo human coronary arteries show that OCT and TPL optical contrast in recorded OCT-TPL images is complimentary and in agreement with histological analysis. Molecular composition (e.g., lipid and oxidized-LDL) detected by TPL imaging can be overlaid onto plaque microstructure depicted by OCT, providing new opportunities for atherosclerotic plaque identification and characterization.

2.
Lasers Surg Med ; 47(6): 485-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018531

RESUMO

BACKGROUND AND OBJECTIVES: Atherosclerosis and plaque rupture leads to myocardial infarction and stroke. A novel hybrid optical coherence tomography (OCT) and two-photon luminescence (TPL) fiber-based imaging system was developed to characterize tissue constituents in the context of plaque morphology. STUDY DESIGN/MATERIALS AND METHODS: Ex vivo coronary arteries (34 regions of interest) from three human hearts with atherosclerotic plaques were examined by OCT-TPL imaging. Histological sections (4 µm in thickness) were stained with Oil Red O for lipid, Von Kossa for calcium, and Verhoeff-Masson Tri-Elastic for collagen/elastin fibers and compared with imaging results. RESULTS: Biochemical components in plaques including lipid, oxidized-LDL, and calcium, as well as a non-tissue component (metal) are distinguished by multi-channel TPL images with statistical significance (P < 0.001). TPL imaging provides complementary optical contrast to OCT (two-photon absorption/emission vs scattering). Merged OCT-TPL images demonstrate the distribution of lipid deposits in registration with detailed plaque surface profile. CONCLUSIONS: Results suggest that multi-channel TPL imaging can effectively identify lipid sub-types and different plaque components. Furthermore, fiber-based hybrid OCT-TPL imaging simultaneously detects plaque structure and composition, improving the efficacy of vulnerable plaque detection and characterization.


Assuntos
Vasos Coronários/patologia , Medições Luminescentes/métodos , Imagem Multimodal/métodos , Placa Aterosclerótica/patologia , Tomografia de Coerência Óptica/métodos , Idoso , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA