Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med J Islam Repub Iran ; 35: 82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291006

RESUMO

Background: Currently, stem cell therapy has been proposed as an efficient strategy to prevent or treat myocardial injuries. The current study was conducted to examine cardioprotective effects of human mesenchymal stem cells derived from amniotic membrane (hAMSCs) against isoproterenol (ISO)-induced myocardial injury and explore its potential mechanisms. Methods: The hAMSCs were injected intramyocardially in male Wistar rats 28 days after last injection of ISO (170 mg/kg body weight for 4 consecutive days). The echocardiography was performed to confirm induction of myocardial damage and cardiac function 28 days after last injection of ISO and 4 weeks hAMSCs transplantation after HF induction. The expression of apoptotic markers such as Bcl-2, Bax and P53 was evaluated using Western blotting assay. Masson's trichrome staining was used to determine fibrosis. The cytoarchitecture of myocardial wall and morphology of cells were investigated using hematoxylin and eosin (H&E) staining. Results: As compared to ISO group, hAMSCs transplantation after heart failure (HF) induction significantly blunted the increasing of cardiac dimensions and restored ejection fraction (EF) and fractional shortening (FS) parameters (p<0.05). Moreover, hAMSCs transplantation after HF induction increased the expression of antiapoptotic markers such as Bcl-2 and decreased the expression of pro-apoptotic markers such as P53 and Bax (p<0.05). As compared to ISO group, hAMSCs transplantation after HF induction markedly reduced interstitial myocardial fibrosis and contributed to maintain of normal cytoarchitecture of myocardial wall and morphology of cells. Conclusion: Collectively, the results of current study suggest that transplantation of hAMSCs confers cardioprotection by targeting ISO-induced mitochondria-dependent (intrinsic) pathway of apoptosis.

2.
Med J Islam Repub Iran ; 35: 187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36042827

RESUMO

Background: Ischemic cardiomyopathies are the leading causes of mortality and morbidity. Stem cell therapy using amniotic membrane mesenchymal stem cells have emerged as a promising cardiac regeneration modality. They have shown great immunological advantage when used in allogeneic or xenogeneic transplantation. The aim of the current study is to accumulate evidence from published preclinical studies on the application of amniotic membrane derived mesenchymal stem cells (AMSCs) in the treatment of ischemic cardiomyopathies including myocardial ischemia and heart failure. The aim is to define if there is enough high-quality current evidence to support starting the use of these cells in clinical trials. Methods: PubMed, SCOPUS, EMBASE, and ISI Web of Science databases were searched without temporal and language restrictions. Data were extracted from selected studies. The primary outcomes were left ventricular ejection fraction (LVEF) and LV fibrosis. The risk of bias (ROB) assessment was performed using SYRCLE's ROB tool. After qualitative synthesis, provided that data meets the criteria for quantitative analysis, a meta-analysis was performed using Stata software V12 to investigate the heterogeneity of the data and to get an overall estimate of the effect size of the treatment on each outcome. Results: On primary search, 438 citations were retrieved. After screening, three studies were selected for quantitative analysis of each of the outcomes LVEF and LV fibrosis. Their administration in acute and chronic MI alleviates heart failure and improves LVEF (SMD=3.56, 95% CI: 2.24-4.87, I-squared=83.1%, p=0.003) and reduces infarct size (SMD= -4.41, 95% CI: (-5.68)-(-3.14), I-squared=79.0%, p=0.009). These observations were achieved in the acute MI model, HF following ischemia due to coronary artery stenosis and coronary artery occlusion with the early restoration of the perfusion. Conclusion: Present low and medium quality evidence from preclinical studies confirm the efficacy of the AMSCs in the preclinical models of acute MI and HF following ischemia due to coronary artery stenosis and permanent/temporary coronary artery occlusion. High-quality preclinical studies are indicated to bridge the gaps in translation of the current findings of AMSCs research for the treatment of patients with acute and chronic myocardial ischemia and heart failure.

3.
J Cardiovasc Thorac Res ; 11(1): 35-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024670

RESUMO

Introduction: Human amnion-derived mesenchymal stem cells (hAMSCs) have been used in the treatment of acute myocardial infarction. In the current study, we investigated the efficacy of hAMSCs for the treatment of chronic model of myocardial ischemia and heart failure (HF) in rats. Methods: Male Wistar rats weighing between 250 to 350 g were randomized into three groups: sham, HF control and HF+hAMSCs. For HF induction, animals were anesthetized and underwent left anterior descending artery ligation. In HF+hAMSCs group, 2×106 cells were injected into the left ventricular muscle four weeks post ischemia in the border zone of the ischemic area. Cardiac function was studied using echocardiography. Masson's trichrome staining was used for studying tissue fibrosis. Cells were transduced with green fluorescent protein (GFP) coding lentiviral vector. Immunohistochemistry was used for detecting GFP, vascular-endothelial growth factor (VEGF) and troponin T markers in the tissue sections. Results: Assessment of the cardiac function revealed no improvement in the myocardial function compared to the control HF group. Moreover, tissue fibrosis was similar in two groups. Immunohistochemical study revealed the homing of the injected hAMSCs to the myocardium. Cells were stained positive for VEGF and troponin T markers. Conclusion: injection of hAMSCs 4 weeks after ischemia does not improve cardiac function and cardiac muscle fibrosis, although the cells show markers of differentiation into vascular endothelial cells and cardiomyocytes. In sum, it appears that hAMSCs are effective in the early phases of myocardial ischemia and does not offer a significant advantage in patients with chronic HF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA