Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Nanotechnol ; 11(5): 475-485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37150981

RESUMO

BACKGROUND: Rotaviruses are the cause of acute gastroenteritis and severe diarrheal diseases in children worldwide. Children under the age of five are more susceptible to rotavirus infections. Due to such as the lack of effective drugs and supportive therapy only, the development of new antiviral agents against rotaviruses is required. Multi-drug-resistant Acinetobacter baumannii is also one of the most challenging Gram-negative bacteria to control and treat due to its antibiotic resistance, particularly in intensive care units. OBJECTIVE: This study aimed to investigate the activity of zinc oxide nanoparticles against human rotavirus and multi-drug resistant Acinetobacter baumannii. METHODS: The standard 50% tissue culture infectious dose method and the real-time polymerase chain reaction assay were used to investigate the effects of zinc oxide nanoparticles on rotaviruses. The well diffusion and the minimum inhibitory concentration method were used to assess the antibacterial activity of zinc oxide nanoparticles against Acinetobacter baumannii. RESULTS: 300 µg/ml of zinc oxide nanoparticles demonstrated the highest anti-rotavirus effects, resulting in a 3.16 logarithmic decrease in virus infectious titer, and a four-unit increase in the cycle threshold value of the real-time polymerase chain reaction assay compared to the untreated control (P value <0.001 and P value = 0.005, respectively). The diameter of the inhibition zone of zinc oxide nanoparticles solution against Acinetobacter baumannii was 17 mm. The minimum inhibitory concentration results of the zinc oxide nanoparticles solution against Acinetobacter baumannii was 1.56 mg/ml. CONCLUSION: Our findings showed that zinc oxide nanoparticles could be considered a promising antimicrobial compound.


Assuntos
Acinetobacter baumannii , Nanopartículas , Rotavirus , Óxido de Zinco , Criança , Humanos , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia
2.
Adv Mater ; 33(33): e2007285, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34117806

RESUMO

The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods, characterization, and fundamental factors of each classification are discussed in detail. Apart from the exclusive characteristics of CuO-based photoelectrodes, the PEC properties of CuO/2D materials, as groups of the growing nanocomposites in photocurrent-generating devices, are discussed in separate sections. Regarding the particular attention paid to the CuO heterostructure photocathodes, the PEC water splitting application is reviewed and the properties of each group such as electronic structures, defects, bandgap, and hierarchical structures are critically assessed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA