Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
3.
Cancers (Basel) ; 15(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37345193

RESUMO

Gliomas are the most common primary brain malignancy and are universally fatal. Despite significant breakthrough in understanding tumor biology, treatment breakthroughs have been limited. There is a growing appreciation that major limitations on effective treatment are related to the unique and highly complex glioma tumor microenvironment (TME). The TME consists of multiple different cell types, broadly categorized into tumoral, immune and non-tumoral, non-immune cells. Each group provides significant influence on the others, generating a pro-tumor dynamic with significant immunosuppression. In addition, glioma cells are highly heterogenous with various molecular distinctions on the cellular level. These variations, in turn, lead to their own unique influence on the TME. To develop future treatments, an understanding of this complex TME interplay is needed. To this end, we describe the TME in adult gliomas through interactions between its various components and through various glioma molecular phenotypes.

4.
Neuro Oncol ; 25(10): 1752-1762, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37289203

RESUMO

Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Glioma/tratamento farmacológico , Neoplasias Encefálicas/patologia , Imunoterapia , Microambiente Tumoral
5.
BioDrugs ; 37(4): 489-503, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37256535

RESUMO

Glioblastoma is highly aggressive and remains difficult to treat despite being the most common malignant primary brain tumor in adults. Current standard-of-care treatment calls for maximum resection of the tumor mass followed by concurrent chemotherapy and radiotherapy and further adjuvant chemotherapy if necessary. Despite this regimen, prognosis remains grim. Immunotherapy has shown promising success in a variety of solid tumor types, but efficacy in glioblastoma is yet to be demonstrated. Barriers to the success of immunotherapy in glioblastoma include: a heterogeneous tumor cell population, a highly immunosuppressive microenvironment, and the blood-brain barrier, to name a few. Several immunotherapeutic approaches are actively being investigated and developed to overcome these limitations. In this review, we present different classes of immunotherapy targeting glioblastoma, their most recent results, and potential future directions.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/terapia , Imunoterapia , Barreira Hematoencefálica , Neoplasias Encefálicas/terapia , Imunossupressores , Microambiente Tumoral
6.
Methods Mol Biol ; 2410: 609-626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914072

RESUMO

Our group has employed methodologies for effective ex vivo generation of dendritic cell (DC) vaccines for patients with primary malignant brain tumors. In order to reliably produce the most potent, most representational vaccinated DC that will engender an antitumor response requires the ability to orchestrate multiple methodologies that address antigen cross-presentation, T-cell costimulation and polarization, and migratory capacity. In this chapter, we describe a novel method for augmenting the immunogenicity and migratory potential of DCs for their use as vaccines. We have elucidated methodologies to avoid the phenomenon known as immunodominance in generating cancer vaccines. We have found that culturing DC progenitors in serum-free conditions for the duration of the differentiation protocol results in a more homogeneously mature population of DCs that exhibit enhanced immunogenicity compared to DCs generated in serum-containing culture conditions. Furthermore, we demonstrate our method for generating high mobility DCs that readily migrate toward lymphoid organ chemoattractants using CCL3 protein. The combination of these two approaches represents a facile and clinically tractable methodology for generating highly mature DCs with excellent migratory capacity.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Neoplasias , Diferenciação Celular , Apresentação Cruzada , Células Dendríticas/imunologia , Humanos , Fenótipo , Vacinas
7.
Materialia (Oxf) ; 202021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34778733

RESUMO

OBJECTIVES: Smoking is a known contributor to the failure of dental implants. Despite a decline in cigarette use, the popularity of e-cigarettes has exploded. However, little is known about how e-cigarettes affect the biologic response to implants. This study examines the effect of e-cigarette aerosol mixtures (ecig-AM) on macrophage activation and osteoblastogenesis of mesenchymal stem cells (MSCs) in response to titanium (Ti) implant surfaces. METHODS: Ecig-AMs were prepared by bubbling aerosol through PBS. Human-derived MSCs or murine-derived macrophages were plated on smooth, rough-hydrophobic, or rough-hydrophilic Ti surfaces in media supplemented with ecig-AM. In macrophages, expression of inflammatory markers was measured by qPCR and macrophage immunophenotype characterized by flow cytometry after 24 hours of exposure. In MSCs, expression of osteogenic markers and inflammatory cytokines was measured by qPCR and ELISA, while alkaline phosphatase activity (ALP) was determined by colorimetric assay. RESULTS: Ecig-AM polarized primary macrophages into a pro-inflammatory state with higher effect on ecig-AM with flavorants and nicotine. Metabolic activity of MSCs decreased in a concentration dependent fashion and was stronger in ecig-AM containing nicotine. MSCs reduced expression of osteogenic markers in response to ecig-AM, but increased RANKL secretion, particularly at the highest ecig-AM concentrations. The effect of ecig-AM exposure was lessened when macrophages or MSCs were cultured on rough-hydrophilic substrates. SIGNIFICANCE: Ecig-AM activated macrophages into a pro-inflammatory phenotype and impaired MSC-to-osteoblast differentiation in response to Ti implant surfaces. These effects were potentiated by flavorants and nicotine, suggesting that e-cigarette use may compromise the osseointegration of dental implants.

8.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795007

RESUMO

Glioblastoma is the the most common primary brain tumor in adults. Onset of disease is followed by a uniformly lethal prognosis and dismal overall survival. While immunotherapies have revolutionized treatment in other difficult-to-treat cancers, these have failed to demonstrate significant clinical benefit in patients with glioblastoma. Obstacles to success include the heterogeneous tumor microenvironment (TME), the immune-privileged intracranial space, the blood-brain barrier (BBB) and local and systemic immunosuppressions. Monoclonal antibody-based therapies have failed at least in part due to their inability to access the intracranial compartment. Bispecific T-cell engagers are promising antibody fragment-based therapies which can bring T cells close to their target and capture them with a high binding affinity. They can redirect the entire repertoire of T cells against tumor, independent of T-cell receptor specificity. However, the multiple challenges posed by the TME, immune privilege and the BBB suggest that a single agent approach may be insufficient to yield durable, long-lasting antitumor efficacy. In this review, we discuss the mechanism of action of T-cell engagers, their preclinical and clinical developments to date. We also draw comparisons with other classes of multispecific antibodies and potential combinations using these antibody fragment therapies.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Neoplasias Encefálicas/genética , Glioblastoma/genética , Linfócitos T/imunologia , Anticorpos Biespecíficos/farmacologia , Humanos
9.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771532

RESUMO

Glioblastoma is an immunologically 'cold' tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. Therefore, to unleash the full potential of immunotherapy in glioblastoma, the trafficking of lymphocytes to the tumor is highly desirable. However, the process of T cell recruitment into the central nervous system (CNS) is tightly regulated. Naïve T cells may undergo an initial licensing process to enter the migratory phenotype necessary to enter the CNS. T cells then must express appropriate integrins and selectin ligands to interact with transmembrane proteins at the blood-brain barrier (BBB). Finally, they must interact with antigen-presenting cells and undergo further licensing to enter the parenchyma. These T cells must then navigate the tumor microenvironment, which is rich in immunosuppressive factors. Altered tumoral metabolism also interferes with T cell motility. In this review, we will describe these processes and their mediators, along with potential therapeutic approaches to enhance trafficking. We also discuss safety considerations for such approaches as well as potential counteragents.

10.
Front Oncol ; 11: 696402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222022

RESUMO

We have only recently begun to understand how cancer metabolism affects antitumor responses and immunotherapy outcomes. Certain immunometabolic targets have been actively pursued in other tumor types, however, glioblastoma research has been slow to exploit the therapeutic vulnerabilities of immunometabolism. In this review, we highlight the pathways that are most relevant to glioblastoma and focus on how these immunometabolic pathways influence tumor growth and immune suppression. We discuss hypoxia, glycolysis, tryptophan metabolism, arginine metabolism, 2-Hydroxyglutarate (2HG) metabolism, adenosine metabolism, and altered phospholipid metabolism, in order to provide an analysis and overview of the field of glioblastoma immunometabolism.

11.
J Neurooncol ; 151(1): 55-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32813186

RESUMO

INTRODUCTION: Glioblastoma (GBM) has a survival rate of around 2 years with aggressive current standard of care. While other tumors have responded favorably to trials combining immunotherapy and chemotherapy, GBM remains uniformly deadly with minimal increases in overall survival. GBM differ from others due to being isolated behind the blood brain barrier, increased heterogeneity and mutational burden, and immunosuppression from the brain environment and tumor itself. METHODS: We have reviewed clinical and preclinical studies investigating how different doses (dose intense (DI) and metronomic) and timing of immunotherapy following TMZ treatment can eradicate tumor cells, alter tumor mutational burden, and change immune cells. RESULTS: Recent clinical trials with standard of care (SoC), DI and metronomic TMZ regimes are no able to completely eradicate GBM. Elevated TMZ levels in DI treatment can overcome MGMT resistance but may result in hypermutation of surviving tumor cells. Higher levels of TMZ will also generate a higher degree of lymphopenia compared to SoC and metronomic regimes in preclinical studies. CONCLUSION: The different levels of lymphopenia and tumor eradication discussed in this review suggest possible beneficial pairings between immunotherapy and TMZ treatment. Treatments resulting in profound lymphopenia will allow for expansion of vaccine specific T cells or of CAT T cells. Clinical and preclinical studies are currently comparing different combinations of TMZ and immunotherapy timing to treat GBM through a balance between tumor killing and immune cell expansion. More frequent immune monitoring time points in ongoing clinical trials are crucial for further development of these combinations.


Assuntos
Neoplasias Encefálicas , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Imunoterapia , Linfopenia , Temozolomida/uso terapêutico , Resultado do Tratamento
12.
Biomaterials ; 243: 119920, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32179303

RESUMO

Macrophages are among the first cells to interact with biomaterials and ultimately determine their integrative fate. Biomaterial surface characteristics like roughness and hydrophilicity can activate macrophages to an anti-inflammatory phenotype. Wnt signaling, a key cell proliferation and differentiation pathway, has been associated with dysregulated macrophage activity in disease. However, the role Wnt signaling plays in macrophage activation and response to biomaterials is unknown. The aim of this study was to characterize the regulation of Wnt signaling in macrophages during classical pro- and anti-inflammatory polarization and in their response to smooth, rough, and rough-hydrophilic titanium (Ti) surfaces. Peri-implant Wnt signaling in macrophage-ablated (MaFIA) mice instrumented with intramedullary Ti rods was significantly attenuated compared to untreated controls. Wnt ligand mRNA were upregulated in a surface modification-dependent manner in macrophages isolated from the surface of Ti implanted in C57Bl/6 mice. In vitro, Wnt mRNAs were regulated in primary murine bone-marrow-derived macrophages cultured on Ti in a surface modification-dependent manner. When macrophageal Wnt secretion was inhibited, macrophage sensitivity to both physical and biological stimuli was abrogated. Loss of macrophage-derived Wnts also impaired recruitment of mesenchymal stem cells and T-cells to Ti implants in vivo. Finally, inhibition of integrin signaling decreased surface-dependent upregulation of Wnt genes. These results suggest that Wnt signaling regulates macrophage response to biomaterials and that macrophages are an important source of Wnt ligands during inflammation and healing.


Assuntos
Materiais Biocompatíveis , Ativação de Macrófagos , Animais , Macrófagos , Camundongos , Propriedades de Superfície , Titânio , Via de Sinalização Wnt
13.
Dent Mater ; 35(1): 176-184, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509481

RESUMO

OBJECTIVES: Roughened dental implants promote mesenchymal stem cell (MSCs) osteoblastic differentiation, and hydrophilic modifications induce anti-inflammatory macrophages activation. While the effect of different surface modifications on osseointegration of commercial dental implants have been compared in vivo and clinically, the initial cellular response to these modifications often overlooked. We aimed to characterize the macrophage inflammatory response and MSC osteogenesis across different commercially available implants in vitro. METHODS: Six commercially available rough implants [OsseoSpeed™ (Astra-Tech™, Implant A); Osseotite® (Biomet 3i™, Implant B); TiUnite™ (Nobel-Biocare®, Implant C); Ti-SLA®, (Implant D), Roxolid® (RXD-SLA, Implant E), RXD-SLActive® (Implant F) (Straumann®)] were examined. Macrophages and MSCs were seeded directly on implants and cultured in custom vials. mRNA and protein levels of pro- (IL1B, IL6, IL17A, CXCL10, TNFa) and anti- (IL4, IL10, TGFB1) inflammatory markers were measured after 24 and 48h in macrophages. Osteoblastic differentiation of MSCs was assessed after seven days by alkaline phosphatase activity, osteocalcin, and angiogenic, osteogenic, and inflammatory markers by ELISA and qPCR (n=6/variable, ANOVA, post hoc Tukey HSD with α=0.05). RESULTS: Hydrophilic implant F induced the highest level of osteogenic factor released from MSCs and anti-inflammatory factors from macrophages with the lowest level of pro-inflammatory factors. Alternatively, implants A and C supported lower levels of osteogenesis and increased secretion of pro-inflammatory factors. SIGNIFICANCE: In this study, we successfully evaluated differences in cell response to commercially available clinical implants using an in vitro model. Data from this model suggest that not all surface modification procedures generate the same cell response.


Assuntos
Implantes Dentários , Osteogênese , Osseointegração , Propriedades de Superfície , Titânio
14.
Biomaterials ; 182: 202-215, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138783

RESUMO

Successful biomaterial implantation can be achieved by controlling the activation of the immune system. The innate immune system is typically the focus on synthetic material compatibility, but this study shows an effect of surface properties in the innate as well as the adaptive systems. These studies look at how macrophages respond to the implanted materials by releasing factors to regulate the microenvironment and recruit additional cells. Our research demonstrates how macrophage response to material surface properties can create changes in the adaptive immune response by altering T-helper cell populations and stem cell recruitment. Titanium (Ti) implants of varying wettability (rough, and rough-hydrophilic) were placed in the femur of 10-week-old male C57Bl/6, or macrophage ablated clodronate liposome injected and transgenic MaFIA (C57BL/6-Tg(Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6)2Bck/J) mice. The microenvironment surrounding Ti implants was assessed using custom PCR arrays at 3 and 7 days following implantation. Changes in specific T-helper, macrophage and stem cell populations were evaluated locally at the implant surface and systemically in the contralateral leg bone marrow and spleen by flow cytometry at 1, 3 and 7 days. Macrophage importance in T-helper and stem cell population changes with metallic surfaces was examined in both in vitro and in vivo with macrophage ablation models. We demonstrate that surface modifications applied to titanium implants to increase surface roughness and wettability can polarize the adaptive immune response towards a Th2, pro-wound healing phenotype, leading to faster resolution of inflammation and increased stem cell recruitment around rough hydrophilic implants with macrophages present.


Assuntos
Materiais Biocompatíveis/química , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Linfócitos T Auxiliares-Indutores/citologia , Titânio/química , Imunidade Adaptativa , Animais , Células Cultivadas , Técnicas de Cocultura , Interações Hidrofóbicas e Hidrofílicas , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos C57BL , Próteses e Implantes , Propriedades de Superfície , Linfócitos T Auxiliares-Indutores/imunologia , Molhabilidade
15.
Clin Oral Implants Res ; 28(4): 414-423, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27006244

RESUMO

OBJECTIVES: To determine the effects of dental implant surface chemistry and energy on macrophage activation in vitro. MATERIALS AND METHODS: Disks made from two clinically used implant materials (titanium [Ti], titanium zirconium alloy [TiZr]) were produced with two different surface treatments (sandblast/acid-etch [SLA], hydrophilic-SLA [modSLA]). Surface roughness, energy, and chemistry were characterized. Primary murine macrophages were isolated from 6- to 8-week-old male C57Bl/6 mice and cultured on test surfaces (Ti SLA, TiZr SLA, Ti modSLA, TiZr modSLA) or control tissue culture polystyrene. mRNA was quantified by quantitative polymerase chain reaction after 24 h of culture. Pro- (IL-1ß, IL-6, and TNF-α) and anti-inflammatory (IL-4, IL-10) protein levels were measured by ELISA after 1 or 3 days of culture. RESULTS: Quantitatively, microroughness was similar on all surfaces. Qualitatively, nanostructures were present on modSLA surfaces that were denser on Ti than on TiZr. modSLA surfaces were determined hydrophilic (high-energy surface) while SLA surfaces were hydrophobic (low-energy surface). Cells on high-energy surfaces had higher levels of mRNA from anti-inflammatory markers characteristic of M2 activation compared to cells on low-energy surfaces. This effect was enhanced on the TiZr surfaces when compared to cells on Ti SLA and Ti modSLA. Macrophages cultured on TiZr SLA and modSLA surfaces released more anti-inflammatory cytokines. CONCLUSIONS: The combination of high-energy and altered surface chemistry present on TiZr modSLA was able to influence macrophages to produce the greatest anti-inflammatory microenvironment and reduce extended pro-inflammatory factor release.


Assuntos
Ligas , Anti-Inflamatórios/metabolismo , Implantes Dentários , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/fisiologia , Titânio , Animais , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propriedades de Superfície
16.
Acta Biomater ; 31: 425-434, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26675126

RESUMO

Biomaterial surface properties including chemistry, topography, and wettability regulate cell response. Previous studies have shown that increasing surface roughness of metallic orthopaedic and dental implants improved bone formation around the implant. Little is known about how implant surface properties can affect immune cells that generate a wound healing microenvironment. The aim of our study was to examine the effect of surface modifications on macrophage activation and cytokine production. Macrophages were cultured on seven surfaces: tissue culture polystyrene (TCPS) control; hydrophobic and hydrophilic smooth Ti (PT and oxygen-plasma-treated (plasma) PT); hydrophobic and hydrophilic microrough Ti (SLA and plasma SLA), and hydrophobic and hydrophilic nano-and micro-rough Ti (aged modSLA and modSLA). Smooth Ti induced inflammatory macrophage (M1-like) activation, as indicated by increased levels of interleukins IL-1ß, IL-6, and TNFα. In contrast, hydrophilic rough titanium induced macrophage activation similar to the anti-inflammatory M2-like state, increasing levels of interleukins IL-4 and IL-10. These results demonstrate that macrophages cultured on high surface wettability materials produce an anti-inflammatory microenvironment, and this property may be used to improve the healing response to biomaterials. STATEMENT OF SIGNIFICANCE: Metals like titanium (Ti) are common in orthopaedics and dentistry due to their ability to integrate with surrounding tissue and good biocompatibility. Roughness- and wettability-increasing surface modifications promote osteogenic differentiation of stem cells on Ti. While these modifications increase production of osteoblastic factors and bone formation, little is known about their effect on immune cells. The initial host response to a biomaterial is controlled primarily by macrophages and the factors they secrete in response to the injury caused by surgery and the material cues. Here we demonstrate the effect of surface roughness and wettability on the activation and production of inflammatory factors by macrophages. Control of inflammation will inform the design of surface modification procedures to direct the immune response and enhance the success of implanted materials.


Assuntos
Materiais Biocompatíveis/química , Macrófagos/metabolismo , Titânio/química , Anti-Inflamatórios/química , Diferenciação Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Inflamação , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ativação de Macrófagos , Macrófagos/citologia , Osseointegração , Osteoblastos/citologia , Osteogênese , Poliestirenos/química , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo , Molhabilidade
17.
Ann Biomed Eng ; 42(12): 2551-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25227453

RESUMO

Titanium (Ti) and Ti alloys are used in orthopaedic/spine applications where biological implant fixation, or osseointegration, is required for long-term stability. These implants employ macro-scale features to provide mechanical stability until arthrodesis, features that are too large to influence healing at the cellular level. Micron-scale rough Ti alloy (Ti-6Al-4V) increases osteoblastic differentiation and osteogenic factor production in vitro and increases in vivo bone formation; however, effects of overall topography, including sub-micron scale and nanoscale features, on osteoblast lineage cells are less well appreciated. To address this, Ti6Al4V surfaces with macro/micro/nano-textures were generated using sand blasting and acid etching that had comparable average roughness values but differed in other roughness parameters (total roughness, profile roughness, maximum peak height, maximum valley depth, root-mean-squared roughness, kurtosis, skewness) (#5, #9, and #12). Human mesenchymal stem cells (HMSCs) and normal human osteoblasts (NHOst) were cultured for 7 days on the substrates and then analyzed for alkaline phosphatase activity and osteocalcin content, production of osteogenic local factors, and integrin subunit expression. All three surfaces supported osteoblastic differentiation of HMSCs and further maturation of NHOst cells, but the greatest response was seen on the #9 substrate, which had the lowest skewness and kurtosis. The #9 surface also induced highest expression of α2 and ß1 integrin mRNA. HMSCs produced highest levels of ITGAV on #9, suggesting this integrin may play a role for early lineage cells. These results indicate that osteoblast lineage cells are sensitive to specific micro/nanostructures, even when overall macro roughness is comparable and suggest that skewness and kurtosis are important variables.


Assuntos
Células-Tronco Mesenquimais , Osteoblastos , Titânio , Fosfatase Alcalina/metabolismo , Ligas , Materiais Biocompatíveis , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular , Células Cultivadas , DNA/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Integrinas/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteoprotegerina/metabolismo , RNA Mensageiro/metabolismo , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA