Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life (Basel) ; 11(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567498

RESUMO

(1) Background: many rare cystic fibrosistransmembrane conductance regulator (CFTR) mutations remain poorly characterized with regard to functional consequences of the mutation. We present the clinical features of two pediatric cystic fibrosis (CF) subjects who are heterozygous for F1099L (c.3297C>G), one with G551D (a class III mutation) and one with 3849 + 10kbC->T (a class V mutation). We also identified the molecular defect(s) that are associated with F1099L mutation to correlate with the clinical features that we observed; (2) Methods: clinical findings and history were extracted from the electronic medical record and de-identified. F1099L-CFTR protein expression level and maturation status, channel function, and the effects of CFTR modulation on these characteristics were investigated using western blotting and iodide efflux assay; (3) Results: these two subjects have mild CF phenotypes when F1099L is combined with two known disease-causing mutations. F1099L-CFTR has a moderate defect in processing and maturation, causing fewer CFTR channels at the cell surface and, therefore, impaired channel activities. These defects could be effectively corrected using VX-809 (lumacaftor); and, (4) Conclusions: our biochemical data correlate with the disease manifestations and suggest that F1099L is potentially a CF-causing mutation. The study expands our knowledge of rare CFTR mutations and may help in developing effective therapies for subjects with F1099L mutation.

2.
Respir Res ; 17: 8, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26800689

RESUMO

BACKGROUND: The aims of this study were to characterize clinical features of a pediatric African-American cystic fibrosis (CF) patient heterozygous for F508del and a novel c.3623G > A mutation, and to identify the molecular defect(s) associated with c.3623G > A mutation. METHODS: The medical record of this patient was analyzed retrospectively. Western blotting and iodide efflux assay were used to study mutant CFTR protein expression level, maturation status, channel function, and the effects of CFTR modulation on these characteristics. RESULTS: The encoding protein of c.3623G > A mutation, G1208D-CFTR, has a moderate processing defect and exhibits impaired channel function, which were partially rescued by using VX-809 or exposed to low temperature (28 °C). The patient has mild CF disease manifestations. CONCLUSIONS: Our biochemical findings correlate with the clinical phenotype and suggest that c.3623G > A is a CF-causing mutation. The study helps expand our knowledge of rare CFTR mutations in a minority population and may have important clinical implications for personalized therapeutic intervention.


Assuntos
Negro ou Afro-Americano/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Ativação do Canal Iônico/genética , Mutação/genética , Sequência de Bases , Humanos , Lactente , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA