RESUMO
A large-sized single crystalline 2D COFs with excellent crystallinity and stability was prepared through the traditional thermal solvent method. The electrochemical performance can be significantly enhanced using a straightforward hybrid approach that involves in situ growth of the 2D COFs on multi-walled carbon nanotubes (MWCNTs). Both the advantages of COFs and CNTs are mutually enhanced. The single-crystalline feature of the obtained COFs improves the structural integrity and brings excellent chemical and electrochemical stabilities for lithium-ion battery applications. The resultant COF-CNT core-shell hybrids greatly improved the conductivity and demonstrated excellent lithium-ion storage performance with a high capacity of 228â mAh g-1 (0.2â A g-1).
RESUMO
Two supramolecular complexes were prepared using cucurbiturils [CBs] as mediators and a four-armed p-xylene derivative (M1) as a guest molecule. The single crystals of these two complexes were obtained and successfully analyzed by single-crystal X-ray diffraction (SCXRD). An unexpected and intriguing 1 : 2 self-assembly arrangement between M1 and CB[8] was notably uncovered, marking its first observation. These host-guest complexes exhibit distinctive photophysical properties, especially emission behaviors. Invaluable insights can be derived from these single-crystal structures. The precious single-crystal structures provide both precise structural information regarding the supramolecular complexes and a deeper understanding of the intricate mechanisms governing their photophysical properties.
RESUMO
A nitrogen-rich graphdiyne (HATN-GDY) material containing electrochemical active hexaazatrinaphthylene units was successfully prepared. HATN-GDY exhibits a superior specific capacity of 2139 mA h g-1 and firm long-term stability due to the unique 2D π-conjugated structure and the large in-plane N-cavities.
RESUMO
Heterogeneity in host and gut microbiota hampers microbial precision intervention of type 2 diabetes mellitus (T2DM). Here, we investigated novel features for patient stratification and bacterial modulators for intervention, using cross-sectional patient cohorts and animal experiments. We collected stool, blood, and urine samples from 103 patients with recent-onset T2DM and 25 healthy control subjects (HCs), performed gut microbial composition and metabolite profiling, and combined it with host transcriptome, metabolome, cytokine, and clinical data. Stool type (dry or loose stool), a feature of the stool microenvironment recently explored in microbiome studies, was used for stratification of patients with T2DM as it explained most of the variation in the multiomics data set among all clinical parameters in our covariate analysis. T2DM with dry stool (DM-DS) and loose stool (DM-LS) were clearly differentiated from HC and each other by LightGBM models, optimal among multiple machine learning models. Compared with DM-DS, DM-LS exhibited discordant gut microbial taxonomic and functional profiles, severe host metabolic disorder, and excessive insulin secretion. Further cross-measurement association analysis linked the differential microbial profiles, in particular Blautia abundances, to T2DM phenotypes in our stratified multiomics data set. Notably, oral supplementation of Blautia to T2DM mice induced inhibitory effects on lipid accumulation, weight gain, and blood glucose elevation with simultaneous modulation of gut bacterial composition, revealing the therapeutic potential of Blautia. Our study highlights the clinical implications of stool microenvironment stratification and Blautia supplementation in T2DM, offering promising prospects for microbial precision treatment of metabolic diseases.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Estudos Transversais , Multiômica , Fezes/microbiologia , Bactérias/genéticaRESUMO
Airborne microbiome alterations, an emerging global health concern, have been linked to anthropogenic activities in numerous studies. However, these studies have not reached a consensus. To reveal general trends, we conducted a meta-analysis using 3226 air samples from 42 studies, including 29 samples of our own. We found that samples in anthropogenic activity-related categories showed increased microbial diversity, increased relative abundance of pathogens, increased co-occurrence network complexity, and decreased positive edge proportions in the network compared with the natural environment category. Most of the above conclusions were confirmed using the samples we collected in a particular period with restricted anthropogenic activities. Additionally, unlike most previous studies, we used 15 human-production process factors to quantitatively describe anthropogenic activities. We found that microbial richness was positively correlated with fine particulate matter concentration, NH3 emissions, and agricultural land proportion and negatively correlated with the gross domestic product per capita. Airborne pathogens showed preferences for different factors, indicating potential health implications. SourceTracker analysis showed that the human body surface was a more likely source of airborne pathogens than other environments. Our results advance the understanding of relationships between anthropogenic activities and airborne bacteria and highlight the role of airborne pathogens in public health.