Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
1.
Cancer Control ; 31: 10732748241257142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769028

RESUMO

OBJECTIVES: To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND: MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS: The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS: ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS: This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Circular , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , RNA Circular/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Proliferação de Células/genética , Linhagem Celular Tumoral , Feminino , Camundongos , Animais , Movimento Celular/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Regen Biomater ; 11: rbae046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769994

RESUMO

Black phosphorus (BP), as a representative metal-free semiconductor, has been extensively explored. It has a higher drug loading capacity in comparison to conventional materials and also possesses excellent biocompatibility and biodegradability. Furthermore, BP nanosheets can enhance the permeability of the blood-brain barrier (BBB) upon near-infrared (NIR) irradiation, owing to their photothermal effect. However, the inherent instability of BP poses a significant limitation, highlighting the importance of surface modification to enhance its stability. Ischemic stroke (IS) is caused by the occlusion of blood vessels, and its treatment is challenging due to the hindrance caused by the BBB. Therefore, there is an urgent need to identify improved methods for bypassing the BBB for more efficient IS treatment. This research devised a novel drug delivery approach based on pterostilbene (Pte) supported by BP nanosheets, modified with polydopamine (PDA) to form BP-Pte@PDA. This system shows robust stability and traverses the BBB using effective photothermal mechanisms. This enables the release of Pte upon pH and NIR stimuli, offering potential therapeutic advantages for treating IS. In a middle cerebral artery occlusion mouse model, the BP-Pte@PDA delivery system significantly reduced infarct size, and brain water content, improved neurological deficits, reduced the TLR4 inflammatory factor expression, and inhibited cell apoptosis. In summary, the drug delivery system fabricated in this study thus demonstrated good stability, therapeutic efficacy, and biocompatibility, rendering it suitable for clinical application.

3.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732175

RESUMO

Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Resistência à Seca
4.
J Ethnopharmacol ; 331: 118330, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740109

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chromolaenaodorata (L.) R.M. King & H. Rob, a perennial herb, has been traditionally utilized as a herbal remedy for treating leech bites, soft tissue wounds, burn wounds, skin infections, and dento-alveolitis in tropical and subtropical regions. AIM OF THE STUDY: The present study was to analyze the active fraction of C. odorata ethanol extract and investigate its hemostatic, anti-inflammatory, wound healing, and antimicrobial properties. Additionally, the safety of the active fraction as an external preparation was assessed through skin irritation and allergy tests. MATERIALS AND METHODS: The leaves and stems of C. odorata were initially extracted with ethanol, followed by purification through AB-8 macroporous adsorption resin column chromatography to yield different fractions. These fractions were then screened for hemostatic activity in mice and rabbits to identify the active fraction. Subsequently, the hemostatic effect of the active fraction was assessed through the bleeding time of the rabbit ear artery in vivo and the coagulant time of rabbit blood in vitro. The anti-inflammatory activity of the active fraction was tested on mice ear edema induced by xylene and rat paw edema induced by carrageenin. Furthermore, the active fraction's promotion effect on wound healing was evaluated using a rat skin injury model, and skin safety tests were conducted on rabbits and guinea pigs. Lastly, antimicrobial activities against two Gram-positive bacteria (G+, Staphylococcus aureus and S. epidermidis) and three Gram-negative bacteria (G-, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were determined using the plate dilution method. RESULTS: The ethanol extract of C. odorata leaves and stems was fractionated into 30%, 60%, and 90% ethanol eluate fractions. These fractions demonstrated hemostatic activity, with the 30% ethanol eluate fraction (30% EEF) showing the strongest effect, significantly reducing bleeding time (P < 0.05). A concentration of 1.0 g/mL of the 30% EEF accelerated cutaneous wound healing in rats on the 3rd, 6th, and 9th day post-operation, with the healing effect increasing over time. No irritation or allergy reactions were observed in rabbits and guinea pigs exposed to the 30% EEF. Additionally, the 30% EEF exhibited mild inhibitory effect on mice ear and rat paw edema, as well as antimicrobial activity against tested bacteria, with varying minimal inhibitory concentration (MIC) values. CONCLUSIONS: The 30% EEF demonstrated a clear hemostatic effect on rabbit bleeding time, a slight inhibitory effect on mice ear edema and rat paw edema, significant wound healing activity in rats, and no observed irritation or allergic reactions. Antibacterial activity was observed against certain clinically isolated bacteria, particularly the G- bacteria. This study lays the groundwork for the potential development and application of C. odorata in wound treatment.

5.
Proc Natl Acad Sci U S A ; 121(19): e2319211121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696467

RESUMO

Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level. While the protein coexpression network recapitulates major biological functions, differential expression patterns reveal proteomic signatures related to specific populations. Comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3%). Our results demonstrate that transcriptome and proteome are governed by distinct genetic bases, likely explained by protein turnover. It also highlights the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteoma , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Variação Genética , Proteômica/métodos , Genótipo , Fenótipo , Perfilação da Expressão Gênica/métodos
6.
J Orthop Res ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751161

RESUMO

RelA/p65 is as a crucial component of the nuclear factor κB (NF-κB) signaling pathway that has a significant impact on various fibrotic diseases. However, its role in the fibrosis of tissues surrounding the joint after traumatic injury remains unclear. In this study, rats were divided into three groups: non-operated control (NC) group, p65-siRNA treated (siRNA-p65) group, and negative siRNA treated (siRNA-neg) group. Then, 10 µL (10 nmol) of p65-siRNA was injected into the joint of the siRNA-p65 group. Meanwhile, 10 µL of negative siRNA was administered to the knee joint of the operated siRNA-neg group for comparison. The rats in the NC group did not receive surgery or drug intervention. After 4 weeks of right knee fixation in each group, X-ray measurements revealed significantly reduced degree of knee flexion contracture following p65-siRNA treatment (siRNA-neg: 77.73° ± 2.799°; siRNA-p65: 105.7° ± 2.629°, p < 0.0001). Histopathological examination revealed that the number of dense fibrous connective tissues decreased following p65-siRNA inhibition. Western blot analysis revealed significantly different expression levels of fibrosis-related proteins between the siRNA-p65 and siRNA-neg groups. Immunohistochemical analysis revealed a reduction in the average number of myofibroblasts in the siRNA-p65 group compared with that in the siRNA-neg group. Thus, intra-articular p65-siRNA injection could attenuate fibroblast activation and fibrosis-related protein production, suppress periarticular tissue fibrosis, and prevent joint contracture by downregulating the NF-κB p65 pathway. Statement of clinical significance: Intra-articular injection of p65-siRNA could reduce myofibroblast proliferation and fibrosis-related protein expression by downregulating the NF-κB p65 pathway, inhibit periarticular tissue fibrosis, and prevent joint adhesion, which represents a potential therapy in the prevention of joint fibrosis following traumatic injury.

7.
Open Med (Wars) ; 19(1): 20240915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584827

RESUMO

Cardiomyocyte pyroptosis is a primary contributor to sepsis-induced cardiac dysfunction (SICD). Recombinant phospholipid transfer protein (PLTP) have been demonstrated to possess anti-inflammatory and antiseptic properties. However, the effect of PLTP on SICD remains unknown. In this study, we established the in vivo and in vitro sepsis model with the recombinant PLTP treatment. The survival rates of mice, mouse cardiac function, cell viability, the protein level of proinflammatory cytokine, and lactate dehydrogenase level were evaluated. The cardiomyocyte pyroptotic changes were observed. The distribution of PLTP and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) in mouse myocardial tissue and expression of PLTP, apoptosis associated speck like protein containing a CARD (ASC), NLRP3, caspase-1, interleukin (IL)-1ß, and Gasdermin D (GSDMD) were detected. PLTP ameliorated the cecal ligation and puncture-induced mouse survival rate decrease and cardiac dysfunction, inhibited the IL-1ß, IL-18, and tumor necrosis factor (TNF)-α release, and blocked the NLRP3 inflammasome/GSDMD signaling pathway in septic mice. In vitro, PLTP reversed the lipopolysaccharide-induced cardiomyocyte pyroptosis, expression of IL-1ß, IL-6, TNF-α, and activation of the NLRP3 inflammasome/GSDMD signal pathway. Moreover, PLTP could bind to NLRP3 and negatively regulate the activity of the NLRP3 inflammasome/GSDMD signal pathway. This study demonstrated that PLTP can ameliorate SICD by inhibiting inflammatory responses and cardiomyocyte pyroptosis by blocking the activation of the NLRP3 inflammasome/GSDMD signaling pathway.

8.
J Biol Chem ; 300(6): 107309, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657867

RESUMO

Novel components in the noncanonical Hippo pathway that mediate the growth, metastasis, and drug resistance of breast cancer (BC) cells need to be identified. Here, we showed that expression of SAM and SH3 domain-containing protein 1 (SASH1) is negatively correlated with expression of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) in a subpopulation of patients with luminal-subtype BC. Downregulated SASH1 and upregulated MAP4K4 synergistically regulated the proliferation, migration, and invasion of luminal-subtype BC cells. The expression of LATS2, SASH1, and YAP1 and the phosphorylation of YAP1 were negatively regulated by MAP4K4, and LATS2 then phosphorylated SASH1 to form a novel MAP4K4-LATS2-SASH1-YAP1 cascade. Dephosphorylation of Yes1 associated transcriptional regulator (YAP1), YAP1/TAZ nuclear translocation, and downstream transcriptional regulation of YAP1 were promoted by the combined effects of ectopic MAP4K4 expression and SASH1 silencing. Targeted inhibition of MAP4K4 blocked proliferation, cell migration, and ER signaling both in vitro and in vivo. Our findings reveal a novel MAP4K4-LATS2-SASH1-YAP1 phosphorylation cascade, a noncanonical Hippo pathway that mediates ER signaling, tumorigenesis, and metastasis in breast cancer. Targeted intervention with this noncanonical Hippo pathway may constitute a novel alternative therapeutic approach for endocrine-resistant BC.

9.
BMC Pulm Med ; 24(1): 160, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566026

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on global health and economies, resulting in millions of infections and deaths. This retrospective cohort study aimed to investigate the effect of antifibrotic agents (nintedanib and pirfenidone) on 1-year mortality in COVID-19 patients with acute respiratory failure. METHODS: Data from 61 healthcare organizations in the TriNetX database were analyzed. Adult patients with COVID-19 and acute respiratory failure were included. Patients with a pre-existing diagnosis of idiopathic pulmonary fibrosis before their COVID-19 diagnosis were excluded. The study population was divided into an antifibrotic group and a control group. Propensity score matching was used to compare outcomes, and hazard ratios (HR) for 1-year mortality were calculated. RESULTS: The antifibrotic group exhibited a significantly lower 1-year mortality rate compared to the control group. The survival probability at the end of the study was 84.42% in the antifibrotic group and 69.87% in the control group. The Log-Rank test yielded a p-value of less than 0.001. The hazard ratio was 0.434 (95% CI: 0.264-0.712), indicating a significant reduction in 1-year mortality in the antifibrotic group. Subgroup analysis demonstrated significantly improved 1-year survival in patients receiving nintedanib treatment and during periods when the Wuhan strain was predominant. DISCUSSION: This study is the first to demonstrate a survival benefit of antifibrotic agents in COVID-19 patients with acute respiratory failure. Further research and clinical trials are needed to confirm the efficacy of these antifibrotic agents in the context of COVID-19 and acute respiratory failure.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Insuficiência Respiratória , Adulto , Humanos , Antifibróticos , Estudos Retrospectivos , Teste para COVID-19 , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/diagnóstico , Insuficiência Respiratória/tratamento farmacológico , Piridonas/uso terapêutico , Resultado do Tratamento
10.
Chin J Nat Med ; 22(3): 249-264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553192

RESUMO

Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1ß, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1ß, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inulina/metabolismo , Inulina/farmacologia , Inulina/uso terapêutico , Interleucina-18 , Codonopsis/metabolismo , Proteínas NLR/metabolismo , Frutanos/metabolismo , Frutanos/farmacologia , Frutanos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Claudina-1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Autofagia , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo , Colo/patologia
11.
Front Immunol ; 15: 1359204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504988

RESUMO

Background: Despite advancements, breast cancer outcomes remain stagnant, highlighting the need for precise biomarkers in precision medicine. Traditional TNM staging is insufficient for identifying patients who will respond well to treatment. Methods: Our study involved over 6,900 breast cancer patients from 14 datasets, including in-house clinical data and single-cell data from 8 patients (37,451 cells). We integrated 10 machine learning algorithms in 55 combinations and analyzed 100 existing breast cancer signatures. IHC assays were conducted for validation, and potential immunotherapies and chemotherapies were explored. Results: We pinpointed six stable Panoptosis-related genes from multi-center cohorts, leading to a robust Panoptosis-model. This model outperformed existing clinical and molecular features in predicting recurrence and mortality risks, with high-risk patients showing worse outcomes. IHC validation from 30 patients confirmed our findings, indicating the model's broader applicability. Additionally, the model suggested that low-risk patients benefit more from immunotherapy, while high-risk patients are sensitive to specific chemotherapies like BI-2536 and ispinesib. Conclusion: The Panoptosis-model represents a major advancement in breast cancer prognosis and treatment personalization, offering significant insights for effectively managing a wide range of breast cancer patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Prognóstico , Mama , Imunoterapia , Medicina de Precisão
12.
Extremophiles ; 28(2): 22, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546878

RESUMO

The taxonomic status of some species of Halobellus, Haloferax, Halogranum, and Haloplanus within the family Haloferacaceae was elucidated by phylogenetic, phylogenomic, and comparative genomic analyses. The relative species of each genus should constitute a single species based on the overall genome-related indexes proposed for species demarcation. The cutoff values of AAI (72.1%), ANI (82.2%), and rpoB' gene similarity (90.7%) were proposed to differentiate genera within the family Haloferacaceae. According to these standards, a novel genus related to the genus Halobaculum was proposed to accommodate Halobaculum halophilum Gai3-2 T and Halobaculum salinum NJ-3-1 T. Five halophilic archaeal strains, DT31T, DT55T, DT92T, SYNS20T, and YSMS11T, isolated from a tidal flat and a marine solar saltern in China, were subjected to polyphasic classification. The phenotypic, phylogenetic, phylogenomic, and comparative genomic analyses revealed that strains DT31T (= CGMCC 1.18923 T = JCM 35417 T), DT55T (= CGMCC 1.19048 T = JCM 36147 T), DT92T (= CGMCC 1.19057 T = JCM 36148 T), SYNS20T (= CGMCC 1.62628 T = JCM 36154 T), and YSMS11T (= CGMCC 1.18927 T = JCM 34912 T) represent five novel species of the genus Halobaculum, for which the names, Halobaculum lipolyticum sp. nov., Halobaculum marinum sp. nov., Halobaculum litoreum sp. nov., Halobaculum halobium sp. nov., and Halobaculum limi sp. nov., are proposed.


Assuntos
Euryarchaeota , Halobacteriaceae , Filogenia , DNA Arqueal/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Euryarchaeota/genética , China , Glicolipídeos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38456846

RESUMO

Halophilic archaea of the class Halobacteria are the most salt-requiring prokaryotes within the domain Archaea. In 1997, minimal standards for the description of new taxa in the order Halobacteriales were proposed. From then on, the taxonomy of the class Halobacteria provides an excellent example of how changing concepts on prokaryote taxonomy and the development of new methods were implemented. The last decades have witnessed a rapid expansion of the number of described taxa within the class Halobacteria coinciding with the era of genome sequencing development. The current members of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteria propose these revisions to the recommended minimal standards and encourage the use of advanced technologies in the taxonomic description of members of the Halobacteria. Most previously required and some recommended minimal standards for the description of new taxa in the class Halobacteria were retained in the present revision, but changes have been proposed in line with the new methodologies. In addition to the 16S rRNA gene, the rpoB' gene is an important molecular marker for the identification of members of the Halobacteria. Phylogenomic analysis based on concatenated conserved, single-copy marker genes is required to infer the taxonomic status of new taxa. The overall genome relatedness indexes have proven to be determinative in the classification of the taxa within the class Halobacteria. Average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values should be calculated for rigorous comparison among close relatives.


Assuntos
Ácidos Graxos , Halobacteriales , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos/química , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/genética , Composição de Bases
15.
J Integr Plant Biol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501444

RESUMO

ACYL-CoA-BINDING PROTEINs (ACBPs) play crucial regulatory roles during plant response to hypoxia, but their molecular mechanisms remain poorly understood. Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70, influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana. Furthermore, we demonstrate the direct binding of WRKY70 to the ACBP4 promoter, resulting in its upregulation and suggesting a positive feedback loop. Additionally, we pinpointed a phosphorylation site at Ser638 of ACBP4, which enhances submergence tolerance, potentially by facilitating WRKY70's nuclear shuttling. Surprisingly, a natural variation in this phosphorylation site of ACBP4 allowed A. thaliana to adapt to humid conditions during its historical demographic expansion. We further observed that both phosphorylated ACBP4 and oleoyl-CoA can impede the interaction between ACBP4 and WRKY70, thus promoting WRKY70's nuclear translocation. Finally, we found that the overexpression of orthologous BnaC5.ACBP4 and BnaA7.WRKY70 in Brassica napus increases submergence tolerance, indicating their functional similarity across genera. In summary, our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response, but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.

16.
Antonie Van Leeuwenhoek ; 117(1): 51, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472444

RESUMO

The current species of Halosegnis and Salella within the class Halobacteria are closely related based on phylogenetic, phylogenomic, and comparative genomic analyses. The Halosegnis species showed 99.8-100.0% 16S rRNA and 96.6-99.6% rpoB' gene similarities to the Salella species, respectively. Phylogenetic and phylogenomic analyses showed that Salella cibi CBA1133T, the sole species of Salella, formed a single tight cluster with Halosegnis longus F12-1T, then with Halosegnis rubeus F17-44T. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) values between Salella cibi CBA1133T and Halosegnis longus F12-1T were 99.2, 94.2, and 98.6%, respectively, much higher than the thresholds for species demarcation. This genome-based classification revealed that the genus Salella should be merged with Halosegnis, and Salella cibi should be a later heterotypic synonym of Halosegnis longus. Halophilic archaeal strains DT72T, DT80T, DT85T, and DT116T, isolated from the saline soil of a tidal flat in China, were subjected to polyphasic taxonomic characterization. The phenotypic, chemotaxonomic, phylogenetic, and phylogenomic features indicated that strains DT72T (= CGMCC 1.18925T = JCM 35418T), DT80T (= CGMCC 1.18926T = JCM 35419T), DT85T (= CGMCC 1.19049T = JCM 35605T), and DT116T (= CGMCC 1.19045T = JCM 35606T) represent four novel species of the genera Halorussus, Halosegnis and Haloglomus, respectively, for which the names, Halorussus caseinilyticus sp. nov., Halorussus lipolyticus sp. nov., Halosegnis marinus sp. nov., and Haloglomus litoreum sp. nov., are proposed.


Assuntos
Halobacteriaceae , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Halobacteriaceae/genética , China , DNA , DNA Arqueal/genética , Ácidos Graxos/química , DNA Bacteriano/genética
17.
Zookeys ; 1193: 145-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487668

RESUMO

The genus Svistella Gorochov, 1987 includes 10 species from Asia, with nine documented in China. In this study, a new species, Svistellayayun He, sp. nov., is described from Xizang, China. Morphologically, it resembles S.rufonotata (Chopard, 1932) but can be distinguished by a smaller inner tympanum, dark-brown setae on the 5th segment of the maxillary palp, and a rounded apex on the ectoparamere. To validate our morphological inferences and support the description of S.yayunsp. nov. as a new species, we performed a PCA based on bioacoustics parameters and molecular analysis. All Svistella species documented in China are distinguished by integrating their songs and DNA barcoding.

18.
Hortic Res ; 11(3): uhae023, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469379

RESUMO

Complete mitochondrial genomes (mitogenomes) of plants are valuable resources for nucleocytoplasmic interactions, plant evolution, and plant cytoplasmic male sterile line breeding. However, the complete assembly of plant mitogenomes is challenging due to frequent recombination events and horizontal gene transfers. Previous studies have adopted Illumina, PacBio, and Nanopore sequencing data to assemble plant mitogenomes, but the poor assembly completeness, low sequencing accuracy, and high cost limit the sampling capacity. Here, we present an efficient assembly toolkit (PMAT) for de novo assembly of plant mitogenomes using low-coverage HiFi sequencing data. PMAT has been applied to the de novo assembly of 13 broadly representative plant mitogenomes, outperforming existing organelle genome assemblers in terms of assembly accuracy and completeness. By evaluating the assembly of plant mitogenomes from different sequencing data, it was confirmed that PMAT only requires 1× HiFi sequencing data to obtain a complete plant mitogenome. The source code for PMAT is available at https://github.com/bichangwei/PMAT. The developed PMAT toolkit will indeed accelerate the understanding of evolutionary variation and breeding application of plant mitogenomes.

19.
J Agric Food Chem ; 72(12): 6519-6525, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497614

RESUMO

Histamine, found abundantly in salt-fermented foods, poses a risk of food poisoning. Natronobeatus ordinarius, a halophilic archaeon isolated from a salt lake, displayed a strong histamine degradation ability. Its histamine oxidase (HOD) gene was identified (hodNbs). This is the first report of an archaeal HOD. The HODNbs protein was determined to be a tetramer with a molecular weight of 307 kDa. HODNbs displayed optimum activity at 60-65 °C, 1.5-2.0 M NaCl, and pH 6.5. Notably, within the broad NaCl range between 0.5 and 2.5 M, HODNbs retained above 50% of its maximum activity. HODNbs exhibited good thermal stability, pH stability, and salinity tolerance. HODNbs was able to degrade various biogenic amines. The Vmax of HODNbs for histamine was 0.29 µmol/min/mg, and the Km was 0.56 mM. HODNbs exhibited high efficiency in histamine removal from fish sauce, namely, 100 µg of HODNbs degraded 5.63 mg of histamine (37.9%) in 10 g of fish sauce within 24 h at 50 °C. This study showed that HODNbs with excellent enzymatic properties has promising application potentials to degrade histamine in high-salt foods.


Assuntos
Histamina , Oxirredutases , Animais , Histamina/metabolismo , Archaea/metabolismo , Cloreto de Sódio , Aminas Biogênicas/metabolismo , Inocuidade dos Alimentos
20.
Food Chem Toxicol ; 186: 114581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460669

RESUMO

To investigate the underlying resistance mechanisms of Saccharomyces cerevisiae against Ag-NPs with different particle sizes and coatings, transcriptome sequencing (RNA-seq) technology was used to characterize the transcriptomes from S. cerevisiae exposed to 20-PVP-Ag, 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag, respectively. The steroid biosynthesis was found as a general pathway for Ag-NPs stress responding, in which ERG6 and ERG3 were inhibited and ERG11, ERG25 and ERG5 were significantly up-regulated to resist the stress by supporting the later mutation and resistance and modulate drug efflux indirectly. The resistance mechanism of S. cerevisiae to 20-PVP-Ag seems different from that of 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag. Under the 20-PVP-Ag, transmembrane transporter activity, transition metal ion homeostasis and oxidative phosphorylation pathway were main resistance pathways to enhance cell transport processes. While 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag mainly impacted RNA binding, structural constituent of ribosome and ribosome pathway which can provide more energy to maintain the number and function of protein in cells. This study reveals the differences in resistance mechanisms of S. cerevisiae to Ag-NPs with different particle sizes and coatings, and explains several main regulatory mechanisms used to respond to silver stress. It will provide theoretical basis for the study of chemical risk assessment.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Saccharomyces cerevisiae/genética , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Transporte Biológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA