Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37895546

RESUMO

Symmetric extensions are essential in quantum mechanics, providing a lens through which to investigate the correlations of entangled quantum systems and to address challenges like the quantum marginal problem. Though semi-definite programming (SDP) is a recognized method for handling symmetric extensions, it struggles with computational constraints, especially due to the large real parameters in generalized qudit systems. In this study, we introduce an approach that adeptly leverages permutation symmetry. By fine-tuning the SDP problem for detecting k-symmetric extensions, our method markedly diminishes the searching space dimensionality and trims the number of parameters essential for positive-definiteness tests. This leads to an algorithmic enhancement, reducing the complexity from O(d2k) to O(kd2) in the qudit k-symmetric extension scenario. Additionally, our approach streamlines the process of verifying the positive definiteness of the results. These advancements pave the way for deeper insights into quantum correlations, highlighting potential avenues for refined research and innovations in quantum information theory.

2.
J Phys Condens Matter ; 33(6): 064002, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33105109

RESUMO

Reconstructing a system Hamiltonian through measurements on its eigenstates is an important inverse problem in quantum physics. Recently, it was shown that generic many-body local Hamiltonians can be recovered by local measurements without knowing the values of the correlation functions. In this work, we discuss this problem in more depth for different systems and apply supervised learning method via neural networks to solve it. For low-lying eigenstates, the inverse problem is well-posed, neural networks turn out to be efficient and scalable even with a shallow network and a small data set. For middle-lying eigenstates, the problem is ill-posed, we present a modified method based on transfer learning accordingly. Neural networks can also efficiently generate appropriate initial points for numerical optimization based on the BFGS method.

3.
Sci Bull (Beijing) ; 62(12): 863-868, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659321

RESUMO

Identifying Hamiltonian of a quantum system is of vital importance for quantum information processing. In this article, we realized and benchmarked a quantum Hamiltonian identification algorithm recently proposed (Zhang and Sarovar, 2014). we realized the algorithm on a liquid nuclear magnetic resonance quantum information processor using two types of working media with different forms of Hamiltonian. Our experiment realized the quantum identification algorithm based on free induction decay signals. We also showed how to process data obtained in a practical experiment. We studied the influence of decoherence by numerical simulations. Our experiments and simulations demonstrate that the algorithm is effective and robust.

4.
Sci Rep ; 4: 6857, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25358758

RESUMO

High quality single qubits are the building blocks in quantum information processing. But they are vulnerable to environmental noise. To overcome noise, purification techniques, which generate qubits with higher purities from qubits with lower purities, have been proposed. Purifications have attracted much interest and been widely studied. However, the full experimental demonstration of an optimal single qubit purification protocol proposed by Cirac, Ekert and Macchiavello [Phys. Rev. Lett. 82, 4344 (1999), the CEM protocol] more than one and half decades ago, still remains an experimental challenge, as it requires more complicated networks and a higher level of precision controls. In this work, we design an experiment scheme that realizes the CEM protocol with explicit symmetrization of the wave functions. The purification scheme was successfully implemented in a nuclear magnetic resonance quantum information processor. The experiment fully demonstrated the purification protocol, and showed that it is an effective way of protecting qubits against errors and decoherence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA