Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 51(5): 1371-1382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38078950

RESUMO

PURPOSE: To investigate the feasibility of reducing the acquisition time for continuous dynamic positron emission tomography (PET) while retaining acceptable performance in quantifying kinetic metrics of 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) in tumors. METHODS: In total, 78 oncological patients underwent total-body dynamic PET imaging for ≥ 60 min, with 8, 20, and 50 patients receiving full activity (3.7 MBq/kg), half activity (1.85 MBq/kg), and ultra-low activity (0.37 MBq/kg) of [18F]FDG, respectively. The dynamic data were divided into 21-, 30-, 45- and ≥ 60-min groups. The kinetic analysis involved model fitting to derive constant rates (VB, K1 to k3, and Ki) for both tumors and normal tissues, using both reversible and irreversible two-tissue-compartment models. One-way ANOVA with repeated measures or the Freidman test compared the kinetic metrics among groups, while the Deming regression assessed the correlation of kinetic metrics among groups. RESULTS: All kinetic metrics in the 30-min and 45-min groups were statistically comparable to those in the ≥ 60-min group. The relative differences between the 30-min and ≥ 60-min groups ranged from 12.3% ± 15.1% for K1 to 29.8% ± 30.0% for VB, and those between the 45-min and ≥ 60-min groups ranged from 7.5% ± 8.7% for Ki to 24.0% ± 24.3% for VB. However, this comparability was not observed between the 21-min and ≥ 60-min groups. The significance trend of these comparisons remained consistent across different models (reversible or irreversible), administrated activity levels, and partial volume corrections for lesions. Significant correlations in tumor kinetic metrics were identified between the 30-/45-min and ≥ 60-min groups, with Deming regression slopes > 0.813. In addition, the comparability of kinetic metrics between the 30-min and ≥ 60-min groups were established for normal tissues. CONCLUSION: The acquisition time for dynamic PET imaging can be reduced to 30 min without compromising the ability to reveal tumor kinetic metrics of [18F]FDG, using the total-body PET/CT system.


Assuntos
Fluordesoxiglucose F18 , Neoplasias , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Cinética , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem
4.
Mol Biosyst ; 7(5): 1613-20, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21380435

RESUMO

Gram-negative bacterium Escherichia coli and the Gram-positive Deinococcus radiodurans fundamentally differ in their cell structures and gene regulations. We have previously reported that IrrE, a Deinococcus genus-specific global regulator, confers significantly enhanced tolerance to various abiotic stresses. To better understand the global effects of IrrE on the regulatory networks, we carried out combined transcriptome and proteome analysis of E. coli expressing the IrrE protein. Our analysis showed that 216 (4.8%) of all E. coli genes were induced and 149 (3.3%) genes were repressed, including those for trehalose biosynthesis, nucleotides biosynthesis, carbon source utilization, amino acid utilization, acid resistance, a hydrogenase and an oxidase. Also regulated were the EvgSA two-component system, the GadE, GadX and PurR master regulators, and 10 transcription factors (AppY, GadW, YhiF, AsnC, BetI, CynR, MhpR, PrpR, TdcA and KdgR). These results demonstrated that IrrE acts as global regulator and consequently improves abiotic stress tolerances in the heterologous host E. coli. The implication of our findings is discussed in relation to the evolutionary role of horizontal gene transfer in bacterial regulatory networks and environmental adaptation.


Assuntos
Proteínas de Escherichia coli/análise , Perfilação da Expressão Gênica/métodos , Proteoma/análise , Proteômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Eletroforese em Gel Bidimensional , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reguladores/genética , Genoma Bacteriano/genética , Redes e Vias Metabólicas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma/genética , Proteoma/metabolismo , Tolerância ao Sal/genética , Transformação Genética
5.
PLoS One ; 4(2): e4422, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19204796

RESUMO

BACKGROUND: Globally, about 20% of cultivated land is now affected by salinity. Salt tolerance is a trait of importance to all crops in saline soils. Previous efforts to improve salt tolerance in crop plants have met with only limited success. Bacteria of the genus Deinococcus are known for their ability to survive highly stressful conditions, and therefore possess a unique pool of genes conferring extreme resistance. In Deinococcus radiodurans, the irrE gene encodes a global regulator responsible for extreme radioresistance. METHODOLOGY/PRINCIPAL FINDINGS: Using plate assays, we showed that IrrE protected E. coli cells against salt shock and other abiotic stresses such as oxidative, osmotic and thermal shocks. Comparative proteomic analysis revealed that IrrE functions as a switch to regulate different sets of proteins such as stress responsive proteins, protein kinases, glycerol-degrading enzymes, detoxification proteins, and growth-related proteins in E. coli. We also used quantitative RT-PCR to investigate expression of nine selected stress-responsive genes in transgenic and wild-type Brassica napus plants. Transgenic B. napus plants expressing the IrrE protein can tolerate 350 mM NaCl, a concentration that inhibits the growth of almost all crop plants. CONCLUSIONS: Expression of IrrE, a global regulator for extreme radiation resistance in D. radiodurans, confers significantly enhanced salt tolerance in both E. coli and B. napus. We thus propose that the irrE gene might be used as a potentially promising transgene to improve abiotic stress tolerances in crop plants.


Assuntos
Proteínas de Bactérias/metabolismo , Brassica napus/fisiologia , Deinococcus/metabolismo , Escherichia coli/fisiologia , Tolerância a Radiação , Tolerância ao Sal/fisiologia , Brassica napus/genética , Citoproteção , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Glicerol/metabolismo , Pressão Osmótica , Filogenia , Plantas Geneticamente Modificadas , Análise Serial de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA