Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Redox Biol ; 67: 102879, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716088

RESUMO

Brown adipose tissue (BAT) is a major site of non-shivering thermogenesis in mammals and plays an important role in energy homeostasis. Nuclear factor-erythroid 2-related factor 1 (NFE2L1, also known as Nrf1), a master regulator of cellular metabolic homeostasis and numerous stress responses, has been found to function as a critical driver in BAT thermogenic adaption to cold or obesity by providing proteometabolic quality control. Our recent studies using adipocyte-specific Nfe2l1 knockout [Nfe2l1(f)-KO] mice demonstrated that NFE2L1-dependent transcription of lipolytic genes is crucial for white adipose tissue (WAT) homeostasis and plasticity. In the present study, we found that Nfe2l1(f)-KO mice develop an age-dependent whitening and shrinking of BAT, with signatures of down-regulation of proteasome, impaired mitochondrial function, reduced thermogenesis, pro-inflammation, and elevated regulatory cell death (RCD). Mechanistic studies revealed that deficiency of Nfe2l1 in brown adipocytes (BAC) primarily results in down-regulation of lipolytic genes, which decelerates lipolysis, making BAC unable to fuel thermogenesis. These changes lead to BAC hypertrophy, inflammation-associated RCD, and consequently cold intolerance. Single-nucleus RNA-sequencing of BAT reveals that deficiency of Nfe2l1 induces significant transcriptomic changes leading to aberrant expression of a variety of genes involved in lipid metabolism, proteasome, mitochondrial stress, inflammatory responses, and inflammation-related RCD in distinct subpopulations of BAC. Taken together, our study demonstrated that NFE2L1 serves as a vital transcriptional regulator that controls the lipid metabolic homeostasis in BAC, which in turn determines the metabolic dynamics, cellular heterogeneity and subsequently cell fates in BAT.


Assuntos
Tecido Adiposo Marrom , Complexo de Endopeptidases do Proteassoma , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Inflamação/metabolismo , Mamíferos/genética , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA , Termogênese/genética
5.
Redox Biol ; 48: 102180, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34763297

RESUMO

Fine-tuning of osteoclast differentiation (OD) and bone remodeling is crucial for bone homeostasis. Dissecting the mechanisms regulating osteoclastogenesis is fundamental to understanding the pathogenesis of various bone disorders including osteoporosis and arthritis. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1), which belongs to the CNC-bZIP family of transcription factors, orchestrates a variety of physiological processes and stress responses. While Nfe2l1 gene may be transcribed into multiple alternatively spliced isoforms, the biological function of the different isoforms of NFE2L1 in bone metabolism, osteoclastogenesis in particular, has not been reported. Here we demonstrate that knockout of all isoforms of Nfe2l1 transcripts specifically in the myeloid lineage in mice [Nfe2l1(M)-KO] results in increased activity of osteoclasts, decreased bone mass and worsening of osteoporosis induced by ovariectomy and aging. In comparison, LysM-Cre-mediated Nfe2l1 deletion has no significant effect on the osteoblast and osteocytes. Mechanistic investigations using bone marrow cells and RAW 264.7 cells revealed that deficiency of Nfe2l1 leads to accelerated and elevated OD, which is attributed, at least in part, to enhanced accumulation of ROS in the early stage of OD and expression of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1α (Nfatc1/α). In addition, NFE2L1 regulates the transcription of multiple antioxidant genes and Nfatc1/α and OD in an isoform-specific manner. While long isoforms of NFE2L1 function as accelerators of induction of Nfatc1/α and antioxidant genes and OD, the short isoform NFE2L1-453 serves as a brake that keeps the long isoforms' accelerator effects in check. These findings provide a novel insight into the regulatory roles of NFE2L1 in osteoclastogenesis and highlight that NFE2L1 is essential in regulating bone remodeling and thus may be a valuable therapeutic target for bone disorders.

6.
Food Chem Toxicol ; 158: 112633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34699923

RESUMO

Streptozotocin (STZ) is a pancreatic ß cell-specific toxicant that is widely used to generate models of diabetes in rodents as well as in the treatment of tumors derived from pancreatic ß cells. DNA alkylation, oxidative stress and mitochondrial toxicity have been recognized as the mechanisms for STZ-induced pancreatic ß cell damage. Here, we found that pancreatic ß cell-specific deficiency of nuclear factor erythroid-derived factor 2-related factor 1 (NFE2L1), a master regulator of the cellular adaptive response to a variety of stresses, in mice led to a dramatic resistance to STZ-induced hyperglycemia. Indeed, fifteen days subsequent to last dosage of STZ, the pancreatic ß cell specific Nfe2l1 knockout [Nfe2l1(ß)-KO] mice showed reduced hyperglycemia, improved glucose tolerance, higher plasma insulin and more intact islets surrounded by exocrine acini compared to the Nfe2l1-Flox control mice with the same treatment. Immunohistochemistry staining revealed a greater amount of insulin-positive cells in the pancreas of Nfe2l1(ß)-KO mice than those in Nfe2l1-Flox mice 15 days after the last STZ injection. In line with this observation, both isolated Nfe2l1(ß)-KO islets and Nfe2l1-deficient MIN6 (Nfe2l1-KD) cells were resistant to STZ-induced toxicity and apoptosis. Furthermore, pretreatment of the MIN6 cells with glycolysis inhibitor 2-Deoxyglucose sensitized Nfe2l1-KD cells to STZ-induced toxicity. These findings demonstrated that loss of Nfe2l1 attenuates pancreatic ß cells damage and dysfunction caused by STZ exposure, partially due to Nfe2l1 deficiency-induced metabolic switch to enhanced glycolysis.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Fator 1 Relacionado a NF-E2 , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Fator 1 Relacionado a NF-E2/genética , Fator 1 Relacionado a NF-E2/metabolismo , Estreptozocina
7.
Toxicol Appl Pharmacol ; 426: 115617, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116071

RESUMO

Alcoholic liver disease (ALD) is a major cause of morbidity and mortality from liver disorders. Various mechanisms, including oxidative stress and impaired lipid metabolism, have been implicated in the pathogenesis of ALD. Our previous studies showed that nuclear factor erythroid-derived 2-like 2 (Nrf2) is a master regulator of adaptive antioxidant response and lipid metabolism by using a liver-specific Nrf2 knockout (Nrf2(L)-KO) mouse model. In the current study, an ALD model was developed by a Lieber-DeCarli liquid-based ethanol diet given to this Nrf2(L)-KO mouse strain. We found that Nrf2(L)-KO mice were quite sensitive to lethality from 6.3% ethanol diet. We thus decreased the ethanol concentration to 4.2% to obtain tissues to analyze the role of hepatic Nrf2 in the development of ALD. We found that mild hepatic steatosis occurred with both liquid control and 4.2% ethanol diet feeding, which contain 35% fat. Both the fatty acid ß-oxidation marker peroxisome proliferators-activated receptor α (PPARα), and lipogenesis regulator PPARγ were reduced with ethanol feeding in Nrf2(L)-KO mice, compared to Nrf2 floxed control mice (Nrf2-LoxP). However, Nrf2(L)-KO livers showed more cell injury than the livers of Nrf2-LoxP mice. Consistent with these data, there was increased proportion of apoptotic cells in the liver of ethanol-fed Nrf2(L)-KO mice comparing Nrf2-LoxP controls. Mechanistically, Nrf2 mediated expression of ethanol detoxification enzymes, such as alcohol dehydrogenase 1 and aldehyde dehydrogenase1a1, likely contributed to the sensitivity to ethanol toxicity. In conclusion, hepatic Nrf2 is critical to the development of ALD, particularly the morbidity and liver injury.


Assuntos
Hepatopatias Alcoólicas , Fator 2 Relacionado a NF-E2/deficiência , Álcool Desidrogenase/genética , Animais , Catalase/genética , Etanol , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/mortalidade , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Triglicerídeos/metabolismo
8.
Redox Biol ; 44: 102015, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058615

RESUMO

Adipocytes play pivotal roles in maintaining energy homeostasis by storing lipids in adipose tissue (AT), regulating the flux of lipids between AT and the circulation in response to the body's energy requirements and secreting a variety of hormones, cytokines and other factors. Proper AT development and function ensure overall metabolic health. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1) belongs to the CNC-bZIP family and plays critical roles in regulating a wide range of essential cellular functions and varies stress responses in many cells and tissues. Human and rodent Nfe2l1 genes can be transcribed into multiple splice variants resulting in various protein isoforms, which may be further modified by a variety of post-translational mechanisms. While the long isoforms of NFE2L1 have been established as master regulators of cellular adaptive antioxidant response and proteasome homeostasis, the exact tissue distribution and physiological function of NFE2L1 isoforms, the short isoforms in particular, are still under intense investigation. With regard to key roles of NFE2L1 in adipocytes, emerging data indicates that deficiency of Nfe2l1 results in aberrant adipogenesis and impaired AT functioning. Intriguingly, a single nucleotide polymorphism (SNP) of the human NFE2L1 gene is associated with obesity. In this review, we summarize the most significant findings regarding the specific roles of the multiple isoforms of NFE2L1 in AT formation and function. We highlight that NFE2L1 plays a fundamental regulatory role in the expression of multiple genes that are crucial to AT metabolism and function and thus could be an important target to improve disease states involving aberrant adipose plasticity and lipid homeostasis.


Assuntos
Adipócitos , Fator 1 Relacionado a NF-E2 , Adipogenia , Animais , Homeostase , Camundongos , Isoformas de Proteínas
9.
Free Radic Biol Med ; 165: 289-298, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545311

RESUMO

Nuclear factor-erythroid 2-related factor 1 (NFE2L1) is a key transcription factor that regulates cellular adaptive responses to various stresses. Our previous studies revealed that adult adipocyte-specific Nfe2l1-knockout [Nfe2l1(f)-KO] mice show adipocyte hypertrophy and severe adipose inflammation, which can be worsened by rosiglitazone, a peroxisome proliferator-activated receptor γ agonist. To further assess the crucial roles of NFE2L1 in adipocytes, we investigated the effect of CL316243, a ß3 adrenergic agonist that promotes lipolysis via a post-translational mechanism, on adipose inflammation in juvenile Nfe2l1(f)-KO mice. In contrast to adult mice, 4-week-old juvenile Nfe2l1(f)-KO mice displayed a normal fat distribution but reduced fasting plasma glycerol levels and elevated adipocyte hypertrophy and macrophage infiltration in inguinal and gonadal WAT. In addition, Nfe2l1(f)-KO mice had decreased expression of multiple lipolytic genes and reduced lipolytic activity in WAT. While 7 days of CL316243 treatment showed no significant effect on adipose inflammation in Nfe2l1-Floxed control mice, the same treatment dramatically alleviated macrophage infiltration and mRNA expression of inflammation and pyroptosis-related genes in WAT of Nfe2l1(f)-KO mice. Together with previous findings in adult mice, the current study highlights that NFE2L1 plays a fundamental regulatory role in lipolytic gene expression and thus might be an important target to improve adipose plasticity and lipid homeostasis.


Assuntos
Adipócitos , Tecido Adiposo Branco , Animais , Dioxóis , Inflamação/tratamento farmacológico , Inflamação/genética , Camundongos , Camundongos Knockout , Fator 1 Relacionado a NF-E2
10.
Arch Toxicol ; 95(3): 883-893, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33398418

RESUMO

Cadmium (Cd) is a heavy metal pollutant that adversely effects the kidney. Oxidative stress and inflammation are likely major mechanisms of Cd-induced kidney injury. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is crucial in regulating antioxidant and inflammatory responses. To investigate the role of Nrf2 in the development of subacute Cd-induced renal injury, we utilized Nrf2 knockout (Nrf2-KO) and control mice (Nrf2-WT) which were given cadmium chloride (CdCl2, 1 or 2 mg/kg i.p.) once daily for 7 days. While subacute CdCl2 exposure induced kidney injury in a dose-dependent manner, after the higher Cd dosage exposure, Nrf2-KO mice showed elevated blood urea nitrogen (BUN) and urinary neutrophil gelatinase-associated lipocalin (NGAL) levels compared to control. In line with the findings, the renal tubule injury caused by 2 mg Cd/kg, but not lower dosage, in Nrf2-KO mice determined by Periodic acid-Schiff staining was more serious than that in control mice. Further mechanistic studies showed that Nrf2-KO mice had more apoptotic cells and severe oxidative stress and inflammation in the renal tubules in response to Cd exposures. Although there were no significant differences in Cd contents of tissues between Cd-exposed Nrf2-WT and Nrf2-KO mice, the mRNA expression of Nrf2 downstream genes, including heme oxygenase 1 and metallothionein 1, were significantly less induced by Cd exposures in the kidney of Nrf2-KO compared with Nrf2-WT mice. In conclusion, Nrf2-deficient mice are more sensitive to kidney injury induced by subacute Cd exposure due to a muted antioxidant response, as well as a likely diminished production of specific Cd detoxification metallothioneins.


Assuntos
Cloreto de Cádmio/toxicidade , Nefropatias/induzido quimicamente , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Cloreto de Cádmio/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Inflamação/induzido quimicamente , Inflamação/patologia , Nefropatias/genética , Testes de Função Renal , Metalotioneína/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Toxicol Appl Pharmacol ; 413: 115393, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412187

RESUMO

Prolonged treatment with rifampicin (RFP), a first-line antibacterial agent used in the treatment of drug-sensitive tuberculosis, may cause various side effects, including metabolic disorders. The nuclear factor (erythroid-derived 2)-like 2 (NFE2L2, also known as NRF2) plays an essential regulatory role in cellular adaptive responses to stresses via the antioxidant response element (ARE). Our previous studies discovered that NRF2 regulates the expression of CCAAT-enhancer-binding protein ß (Cebpb) and peroxisome proliferator-activated receptor gamma (Pparg) in the process of adipogenesis. Here, we found that prolonged RFP treatment in adult male mice fed a high-fat diet developed insulin resistance, but reduced fat accumulation and decreased expression of multiple adipogenic genes in white adipose tissues. In 3 T3-L1 preadipocytes, RFP reduced the induction of Cebpb, Pparg and Cebpa at mRNA and protein levels in the early and/or later stage of hormonal cocktail-induced adipogenesis. Mechanistic investigations demonstrated that RFP inhibits NRF2-ARE luciferase reporter activity and expression of NRF2 downstream genes under normal culture condition and in the early stage of adipogenesis in 3 T3-L1 preadipocytes, suggesting that RFP can disturb adipogenic differentiation via NRF2-ARE interference. Taken together, we demonstrate a potential mechanism that RFP impairs adipose function by which RFP likely inhibits NRF2-ARE pathway and thereby interrupts its downstream adipogenic transcription network.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Antibióticos Antituberculose/toxicidade , Elementos de Resposta Antioxidante , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/metabolismo , Rifampina/toxicidade , Células 3T3-L1 , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Tecido Adiposo Branco/fisiopatologia , Adiposidade/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Obesidade/genética , Obesidade/patologia , Obesidade/fisiopatologia , Transdução de Sinais , Transcrição Gênica
12.
Food Chem Toxicol ; 146: 111836, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33137425

RESUMO

Nuclear factor-erythroid 2-related factor 1 (NFE2L1, also known as NRF1) belongs to the CNC-bZIP family and is a master regulator of cellular adaptive responses to various stresses in many cells and tissues. Rosiglitazone (RGZ), a thiazolidinedione agonist of PPARγ, is widely used in the treatment of type 2 diabetes mellitus by stimulating genes which favor storage of triglycerides. Our previous studies demonstrated that loss of Nfe2l1 in adipocytes [Nfe2l1(f)-KO] resulted in diminished subcutaneous white adipose tissue (WAT) mass with adipocyte hypertrophy and severe adipose inflammation, which might be attributed, at least in part, to impaired lipolysis. However, the exact mechanism underlying this phenotype remains unclear. To further clarify the regulatory role of NFE2L1 in adipocyte lipid metabolism, we used protracted RGZ treatment to facilitate lipid accumulation in mice. In Nfe2l1flox/flox control mice, three weeks of RGZ treatment significantly downregulated mRNA levels of a group of inflammation-related genes in WAT. In contrast, the phenotype of Nfe2l1(f)-KO mice was aggravated showing increased transcript expression related to inflammation and pyroptosis in their shrunk WAT. These findings provide deeper insight into the mechanisms by which NFE2L1 regulates the expression of a set of lipolysis-related genes and controls WAT plasticity and global energy homeostasis.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Inflamação/induzido quimicamente , Fator 1 Relacionado a NF-E2/metabolismo , Rosiglitazona/toxicidade , Adipogenia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hipoglicemiantes/toxicidade , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Fator 1 Relacionado a NF-E2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Arch Pharm Res ; 43(3): 350-360, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32189204

RESUMO

White adipocytes play a key role in maintaining whole body energy homeostasis by forming white adipose tissue (WAT). The impairment of WAT formation or WAT dysfunction is clearly associated with severe metabolic disorders. Mature adipocytes are derived from differentiated preadipocytes and are pivotal in energy storage and metabolism. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a member of a family of CNC-bZIP proteins which exert their transcriptional control on genes harboring antioxidant response elements (ARE) in partnership with small musculoaponeurotic fibrosarcoma proteins. The activation of Nrf2-ARE coordinated by specific repressor Kelch-like ECH-associated protein 1 (Keap1) regulates networks of genes controlling diverse homeostatic processes involving adaptive antioxidant response and detoxification among many other adaptive responses. Interestingly, accumulating evidence indicates that Nrf2 may act as a transcription factor in regulating the formation and function of adipose tissues, including adipogenesis, lipid metabolism and insulin sensitivity. In this mini-review, an overview on the distinct roles of Nrf2 in adipocytes is provided. While highlighting the regulatory role of Nrf2 in adipogenesis, recent key findings on Nrf2 in insulin signal transduction and energy metabolism of adipocytes are also summarized.


Assuntos
Adipócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Metabolismo Energético , Humanos , Insulina/metabolismo , Transdução de Sinais
14.
Redox Biol ; 30: 101414, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31931283

RESUMO

Nuclear factor erythroid 2-related factor 1 (NRF1), a ubiquitously expressed CNC-bZIP transcription factor, plays a critical role in white adipocyte (WAC) biology, whereas the underlying mechanisms remain unknown. The mouse Nrf1 gene is transcribed in a number of alternatively spliced forms, resulting in two long protein isoforms (L-NRF1) containing 741 and 742 amino acids (aa) and multiple short isoforms (S-NRF1). Our previous study found that adipocyte-specific knockout of Nrf1 [Nrf1(f)-KO] in mice disturbs the expression of lipolytic genes in adipocytes, leading to adipocyte hypertrophy followed by inflammation, pyroptosis and insulin resistance. In the present study, we found that the stromal vascular fraction (SVF) cells isolated from white adipose tissues (WAT) of Nrf1(f)-KO mice display augmented adipogenesis showing elevated mRNA and protein expression of adipogenic markers and lipid accumulation. In 3T3-L1 cells, stable knockdown (KD) of all or long isoforms of Nrf1 (termed as A-Nrf1-KD and L-Nrf1-KD, respectively) using lentiviral shRNAs resulted in enhanced and accelerated adipogenic differentiation. Conversely, overexpression of L-NRF1-741, but not any of the S-NRF1, substantially attenuated adipogenesis in 3T3-L1 cells. These findings indicate that L-NRF1 might serve as a critical negative regulator of adipogenesis. Mechanistic investigation revealed that L-NRF1 may negatively regulates the transcription of peroxisome proliferator-activated receptor γ (PPARγ), in particular the master regulator of adipogenesis PPARγ2. Taken all together, the findings in the present study provide further evidence for a novel role of NRF1 beyond its participation in cellular antioxidant response and suggest that L-NRF1 is a negative regulator of PPARγ2 expression and thereby can suppress adipogenesis.


Assuntos
Adipogenia , Fator 1 Relacionado a NF-E2/genética , Fator 1 Relacionado a NF-E2/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
Redox Biol ; 30: 101412, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901728

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatócitos/citologia , Fator 2 Relacionado a NF-E2/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Especificidade de Órgãos , PPAR gama/genética , Palmitatos/efeitos adversos
16.
Sci Total Environ ; 668: 310-317, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852208

RESUMO

Although epidemiologic studies show an association between long-term environmental inorganic arsenic (iAs) exposure and various disorders of glucose and lipid metabolism, the mechanisms of these ailments remain unclear. While white adipose tissue (WAT) essentially acts as a storage tissue for energy and is key to energy homeostasis, brown adipose tissue (BAT) consumes excess energy via uncoupling protein 1-mediated non-shivering thermogenesis in mitochondria and helps maintain the steady state of glucose and lipid metabolism. Our previous in vitro work found that iAs may inhibit adipogenesis and glucose uptake in adipocytes, leading us to hypothesize that chronic exposure to iAs in vivo may also affect the development and function of BAT, which plays a part in iAs-induced metabolic disorders. Thus, adult C57BL/6J female mice were provided drinking water containing 5 or 20 ppm of inorganic arsenicals (iAs3+ and iAs5+) for 17 weeks and control mice were given unaltered water. In these mice, iAs exposure induced cold intolerance and lipid accretion in BAT. In addition, iAs exposure impaired expression of various genes related to thermogenesis, mitochondrial function, adipocyte differentiation, as well as lipolysis in BAT of the exposed mice. These findings suggest a novel toxicity of iAs in BAT occurring via induction of BAT malfunction and impairment of thermogenesis. This novel toxicological linkage helps explain the mechanisms linking iAs exposure to increased risk of disorders of glucose and lipid metabolism.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Arsênio/toxicidade , Exposição Dietética/análise , Poluentes Químicos da Água/toxicidade , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Arsênio/análise , Água Potável/química , Metabolismo Energético , Feminino , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Termogênese , Testes de Toxicidade Crônica , Proteína Desacopladora 1 , Poluentes Químicos da Água/análise
17.
Toxicol Appl Pharmacol ; 367: 62-70, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30742845

RESUMO

Arsenic exposure increases the risk of various bone disorders. For instance, chronic exposure to low level arsenic can cause bone resorption by promoting osteoclast differentiation. Osteoclast precursor cells produce hydrogen peroxide after low level arsenic exposure and then undergo differentiation, producing cells which break down bone matrix. Nuclear factor E2-related factor 2 (Nrf2) regulates receptor activator of nuclear factor-κB dependent osteoclastogenesis by modulating intracellular reactive oxygen species (ROS) signaling via expression of cytoprotective enzymes. Here we tested the hypothesis that loss of Nrf2 will increase arsenic-induced bone loss. We treated 40 week-old Nrf2+/+ and Nrf2-/- mice with 5 ppm arsenic in the drinking water, which produces a blood arsenic level similar to humans living in areas where arsenic exposure is endemic. After 4 months, Micro-CT and dual-energy x-ray analysis revealed a drastic overall decrease in the bone volume with arsenic treatment in mice lacking Nrf2. Deficiency of Nrf2 in RAW 264.7 cells or bone marrow-derived macrophages (BMMs) promoted arsenic-induced osteoclast differentiation. Lack of Nrf2 increases arsenic-induced ROS levels and phosphorylation of p38. N-Acetyl-cysteine and SB203580 pretreatment essentially abolished arsenic-induced phosphorylation of p38 and reversed arsenic-induced increased osteoclast differentiation in Nrf2 deficiency. Taken together, our data suggest that loss of Nrf2 causes increased oxidative stress and enhanced susceptibility to arsenic-induced bone loss.


Assuntos
Arsenitos/toxicidade , Remodelação Óssea/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/deficiência , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/induzido quimicamente , Compostos de Sódio/toxicidade , Animais , Feminino , Fêmur/metabolismo , Fêmur/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
18.
Food Chem Toxicol ; 121: 495-503, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30248482

RESUMO

Binge alcohol drinking is an important health concern and well-known risk factor for the development of numerous disorders. Oxidative stress plays a critical role in the pathogenesis of acute alcoholism. Nuclear factor erythroid 2 like 2 (NRF2) is a master regulator of cellular adaptive response to oxidative insults. However, the role of NRF2 in acute alcoholism and associated pathologies remains unclear. We found that Nrf2-knockout (Nrf2-KO) mice had exaggerated hypoglycemia and hypothermia and increased mortality compared to wildtype mice after binge ethanol exposure. This phenotype was partially rescued by providing warm environment and/or glucose administration. Acute high dose of alcohol exposure resulted in substantially worsened liver and pancreatic injuries in Nrf2-KO mice. Importantly, deficiency of Nrf2 allowed severe pancreatitis and pancreatic ß-cell injury with increased insulin secretion and/or leaking during binge ethanol exposure, which contributed to hypoglycemia. In contrast, a clinically used NRF2 activator dimethyl fumarate (DMF) protected against hypoglycemia and lethality induced by acute ethanol exposure. Furthermore, Nrf2-KO mice likely had defective hepatic acetaldehyde metabolism. Taken together, NRF2 plays an important protective role against acute binge alcohol-induced hepatic and pancreatic damage, which may be partially attributable to its primary regulating role in antioxidant response and impact on ethanol metabolism.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Pancreatopatias/induzido quimicamente , Doença Aguda , Animais , Fumarato de Dimetilo/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Temperatura Alta , Hiperinsulinismo/induzido quimicamente , Hipoglicemia/induzido quimicamente , Hipoglicemia/genética , Hipotermia/induzido quimicamente , Hipotermia/genética , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Pancreatopatias/metabolismo
19.
Toxicol Appl Pharmacol ; 358: 1-9, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30196066

RESUMO

Non-small cell lung cancer (NSCLC) has a high mortality rate worldwide. Various treatments strategies have been used against NSCLC including individualized chemotherapies, but innate or acquired cancer cell drug resistance remains a major obstacle. Recent studies revealed that the Kelch-like ECH associated protein 1/Nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway is intimately involved in cancer progression and chemoresistance. Thus, antagonizing Nrf2 would seem to be a viable strategy in cancer therapy. In the present study a traditional Chinese medicine, triptolide, was identified that markedly inhibited expression and transcriptional activity of Nrf2 in various cancer cells, including NSCLC and liver cancer cells. Consequently, triptolide made cancer cells more chemosensitivity toward antitumor drugs both in vitro and in a xenograft tumor model system using lung carcinoma cells. These results suggest that triptolide blocks chemoresistance in cancer cells by targeting the Nrf2 pathway. Triptolide should be further investigated in clinical cancer trials.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Elementos de Resposta Antioxidante/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diterpenos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fenantrenos/administração & dosagem , Células A549 , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Elementos de Resposta Antioxidante/fisiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Compostos de Epóxi/administração & dosagem , Células Hep G2 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Toxicol Appl Pharmacol ; 357: 62-69, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30165058

RESUMO

Alcoholic liver disease (ALD) is a leading cause of morbidity and mortality of liver disorders and a major health issue globally. ALD refers to a spectrum of liver pathologies ranging from steatosis, steatohepatitis, fibrosis, cirrhosis and even hepatocellular carcinoma. Various mechanisms, including oxidative stress, protein and DNA modification, inflammation and impaired lipid metabolism, have been implicated in the pathogenesis of ALD. Further, reactive oxygen species (ROS) in particular, have been identified as a key component in the initiation and progression of ALD. Nuclear factor erythroid 2 like 2 (Nrf2) is a master regulator of the intracellular adaptive antioxidant response to oxidative stress, and aids in the detoxification of a variety of toxicants. Given its cytoprotective role, Nrf2 has been extensively studied as a therapeutic target for ALD. Paradoxically, however, emerging evidence have revealed that Nrf2 may be implicated in the progression of ALD. In this review, we summarize the role of Nrf2 in the development of ALD and discuss the underlying mechanisms. Clearly, more comprehensive studies with proper animal and cell models and in human are needed to verify the potential therapeutic role of Nrf2 in ALD.


Assuntos
Hepatopatias Alcoólicas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regulação da Expressão Gênica , Humanos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA