RESUMO
Detoxification of heme in Plasmodium depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, ß-hematin. Here, we apply emerging methods of in situ cryo-electron tomography and 3D electron diffraction to obtain a definitive structure of hemozoin directly from ruptured parasite cells. Biogenic hemozoin crystals take a striking polar morphology. Like ß-hematin, the unit cell contains a heme dimer, which may form four distinct stereoisomers: two centrosymmetric and two chiral enantiomers. Diffraction analysis, supported by density functional theory analysis, reveals a selective mixture in the hemozoin lattice of one centrosymmetric and one chiral dimer. Absolute configuration has been determined by morphological analysis and confirmed by a novel method of exit-wave reconstruction from a focal series. Atomic disorder appears on specific facets asymmetrically, and the polar morphology can be understood in light of water binding. Structural modeling of the heme detoxification protein suggests a function as a chiral agent to bias the dimer formation in favor of rapid growth of a single crystalline phase. The refined structure of hemozoin should serve as a guide to new drug development.
RESUMO
Due to quasi-one-dimensional confinement, nanowires possess unique electronic properties, which can promote specific device architectures. However, nanowire growth presents paramount challenges, limiting the accessible crystal structures and elemental compositions. Here we demonstrate solid-state topotactic exchange that converts wurtzite InAs nanowires into Zintl Eu3In2As4. Molecular-beam-epitaxy-based in situ evaporation of Eu and As onto InAs nanowires results in the mutual exchange of Eu from the shell and In from the core. Therefore, a single-phase Eu3In2As4 shell grows, which gradually consumes the InAs core. The mutual exchange is supported by the substructure of the As matrix, which is similar across the wurtzite InAs and Zintl Eu3In2As4 and therefore is topotactic. The Eu3In2As4 nanowires undergo an antiferromagnetic transition at a Néel temperature of ~6.5 K. Ab initio calculations confirm the antiferromagnetic ground state and classify Eu3In2As4 as a C2T axion insulator, hosting both chiral hinge modes and unpinned Dirac surface states. The topotactic mutual-exchange nanowire growth will, thus, enable the exploration of intricate magneto-topological states in Eu3In2As4 and potentially in other exotic compounds.
RESUMO
Spherical particles with diameters within the wavelength of visible light, known as spherulites, manipulate light uniquely due to their spatial organization and their structural birefringence. Most of the known crystalline spherulites are branched, and composed of metals, alloys, and semi-crystalline polymers. Recently, a different spherulite architecture is discovered in the vision systems of decapod crustaceans - core-shell spherulites composed of highly birefringent ( Δ n ≈ 30 % $\Delta n \approx \ 30\%$ ) organic single-crystal platelets, with exceptional optical properties. These metastructures, which efficiently scatter light even in dense aqueous environments, have no synthetic equivalence and serve as a natural proof-of-concept as well as synthetic inspiration for thin scattering media. Here, the synthesis of core-shell spherulites composed of guanine crystal platelets (( Δ n ≈ 25 % $\Delta n \approx 25\%$ ) is presented in a two-step emulsification process in which a water/oil/water emulsion and induced pH changes are used to promote interfacial crystallization. Carboxylic acids neutralize the dissolved guanine salts to form spherulites composed of single, radially stacked, ß-guanine platelets, which are oriented tangentially to the spherulite surface. Using Mie theory calculations and forward scattering measurements from single spherulites, it is found that due to the single-crystal properties and orientation, the synthetic spherulites possess a high tangential refractive index, similarly to biogenic particles.
RESUMO
Plants undergo substantial biomineralization of silicon, which is deposited primarily in cell walls as amorphous silica. The mineral formation could be moderated by the structure and chemistry of lignin, a polyphenol polymer that is a major constituent of the secondary cell wall. However, the reactions between lignin and silica have not yet been well elucidated. Here, we investigate silica deposition onto a lignin model compound. Polyphenyl propanoid was synthesized from coniferyl alcohol by oxidative coupling with peroxidase in the presence of acidic tetramethyl orthosilicate, a silicic acid precursor. Raman, Fourier transform infrared, and X-ray photoelectron spectroscopies detected changes in lignin formation in the presence of silicic acid. Bonds between the Si-O/Si-OH residues and phenoxyl radicals and lignin functional groups formed during the first 3 h of the reaction, while silica continued to form over 3 days. Thermal gravimetric analysis indicated that lignin yields increased in the presence of silicic acid, possibly via the stabilization of phenolic radicals. This, in turn, resulted in shorter stretches of the lignin polymer. Silica deposition initiated within a lignin matrix via the formation of covalent Si-O-C bonds. The silica nucleants grew into 2-5 nm particles, as observed via scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Additional silica precipitated into an extended gel. Collectively, our results demonstrate a reciprocal relation by which lignin polymerization catalyzes the formation of silica, and at the same time silicic acid enhances lignin polymerization and yield.
Assuntos
Lignina , Dióxido de Silício , Lignina/química , Dióxido de Silício/química , Biomineralização , Ácido Silícico/química , Silício/químicaRESUMO
We demonstrate the use of a 4-dimensional scanning transmission electron microscope (4D-STEM) to extract atomic cross section information in amorphous materials. We measure the scattering amplitudes of 200 keV electrons in several representative specimens: amorphous carbon, silica, amorphous ice of pure water, and vitrified phosphate buffer solution. Diffraction patterns are recorded by 4D-STEM with or without energy filter at the zero-loss peak. In addition, Electron Energy Loss Spectroscopy (EELS) data are acquired at several thicknesses and energies. Mixed elastic and inelastic contributions for thick samples can be decoupled based on a convolution model. Measured differential cross sections between 1 and 3 mrad are due primarily to plasmon excitations and follow precisely a 1/θ2 angular distribution. The measured intensities match Inokuti's calculations of total dipole matrix elements for discrete dipole transitions alone, i.e., transitions to bound states of the atom and not to continuum states. We describe the fundamental mechanism of plasmon excitation in insulators as a two-step interaction process with a fast electron. First, a target electron in the specimen is excited, the probability for which follows from the availability of atomic transitions, with a strong dependence on the column of the periodic table. Second, the dielectric response of the material determines the energy loss. The energy of the loss peak depends primarily on the valence electrons. Elastic scattering is dominant at higher angles, and can be fitted conveniently to 1/θ3.7 with a linear dependence on atomic number for light atoms. In order to facilitate the interpretation of 4D STEM measurements in terms of material composition, we introduce two key parameters. Zeta is an analytical equivalent of classical STEM Z-contrast, determined by the ratio of elastic to inelastic scattering coefficients, while eta is the elastic coefficient divided by thickness. The two parameters may serve for identification of basic classes of materials in biological and other amorphous organic specimens.
RESUMO
Tungsten suboxide W18O49 nanowhiskers are a material of great interest due to their potential high-end applications in electronics, near-infrared light shielding, catalysis, and gas sensing. The present study introduces three main approaches for the fundamental understanding of W18O49 nanowhisker growth and structure. First, W18O49 nanowhiskers were grown from γ-WO3/a-SiO2 nanofibers in situ in a scanning electron microscope (SEM) utilizing a specially designed microreactor (µReactor). It was found that irradiation by the electron beam slows the growth kinetics of the W18O49 nanowhisker, markedly. Following this, an in situ TEM study led to some new fundamental understanding of the growth mode of the crystal shear planes in the W18O49 nanowhisker and the formation of a domain (bundle) structure. High-resolution scanning transmission electron microscopy analysis of a cross-sectioned W18O49 nanowhisker revealed the well-documented pentagonal Magnéli columns and hexagonal channel characteristics for this phase. Furthermore, a highly crystalline and oriented domain structure and previously unreported mixed structural arrangement of tungsten oxide polyhedrons were analyzed. The tungsten oxide phases found in the cross section of the W18O49 nanowhisker were analyzed by nanodiffraction and electron energy loss spectroscopy (EELS), which were discussed and compared in light of theoretical calculations based on the density functional theory method. Finally, the knowledge gained from the in situ SEM and TEM experiments was valorized in developing a multigram synthesis of W18O49/a-SiO2 urchin-like nanofibers in a flow reactor.
RESUMO
Numerous bio-organisms employ template-assisted crystallization of molecular solids to yield crystal morphologies with unique optical properties that are difficult to reproduce synthetically. Here, a facile procedure is presented to deposit bio-inspired birefringent crystals of xanthine derivatives on a template of single-crystal quartz. Crystalline sheets that are several millimeters in length, several hundred micrometers in width, and 300-600 nm thick, are obtained. The crystal sheets are characterized with a well-defined orientation both in and out of the substrate plane, giving rise to high optical anisotropy in the plane parallel to the quartz surface, with a refractive index difference Δn ≈ 0.25 and a refractive index along the slow axis of n ≈ 1.7. It is further shown that patterning of the crystalline stripes with a tailored periodic grating leads to a thin organic polarization-dependent diffractive meta-surface, opening the door to the fabrication of various optical devices from a platform of small-molecule based organic dielectric crystals.
RESUMO
Uranium is a high-value energy element, yet also poses an appreciable environmental burden. The demand for a straightforward, low energy, and environmentally friendly method for encapsulating uranium species can be beneficial for long-term storage of spent uranium fuel and a host of other applications. Leveraging on the low melting point (60 °C) of uranyl nitrate hexahydrate and nanocapillary effect, a uranium compound is entrapped in the hollow core of WS2 nanotubes. Followingly, the product is reduced at elevated temperatures in a hydrogen atmosphere. Nanocrystalline UO2 nanoparticles anchor within the WS2 nanotube lumen are obtained through this procedure. Such methodology can find utilization in the processing of spent nuclear fuel or other highly active radionuclides as well as a fuel for deep space missions. Moreover, the low melting temperatures of different heavy metal-nitrate hydrates, pave the way for their encapsulation within the hollow core of the WS2 nanotubes, as demonstrated herein.
RESUMO
Two-dimensional (2D) halide perovskites, HaPs, can provide chemical stability to three-dimensional (3D) HaP surfaces, protecting them from exposure to ambient species and from reacting with contacting layers. Both actions occur with 2D HaPs, with the general stoichiometry R2PbI4 (R: long or bulky organic amine) covering the 3D ones. Adding such covering films can also boost power conversion efficiencies of photovoltaic cells by passivating surface/interface trap states. For maximum benefit, we need conformal ultrathin and phase-pure (n = 1) 2D layers to enable efficient tunneling of photogenerated charge carriers through the 2D film barrier. Conformal coverage of ultrathin (<10 nm) R2PbI4 layers on 3D perovskites is challenging with spin coating; even more so is its upscaling for larger-area devices. We report on vapor-phase cation exchange of the 3D surface with the R2PbI4 molecules and real-time in situ growth monitoring by photoluminescence (PL) to determine limits for forming ultrathin 2D layers. We characterize the 2D growth stages, following the changing PL intensity-time profiles, by combining structural, optical, morphological, and compositional characterizations. Moreover, from quantitative X-ray photoelectron spectroscopy (XPS) analysis on 2D/3D bilayer films, we estimate the smallest width of a 2D cover that we can grow to be <5 nm, roughly the limit for efficient tunneling through a (semi)conjugated organic barrier. We also find that, besides protecting the 3D against ambient humidity-induced degradation, the ultrathin 2D-on-3D film also aids self-repair following photodamage.
RESUMO
The introduction of direct electron detectors (DEDs) to transmission electron microscopy has set off the 'resolution revolution', especially for cryoTEM low-dose imaging of soft matter. In comparison to traditional indirect electron detectors such as Charged-Coupled Devices (CCD), DEDs show an improved modulation transfer function (MTF) and detective quantum efficiency (DQE) across all spatial frequencies, as well as faster frame rates which enable single electron counting. The benefits of such characteristics for imaging, spectroscopy and electron holography have been demonstrated previously. However, studies are lacking on the application of DEDs for localized characterization of short- to medium- range-order (SRO, MRO) in amorphous materials using electron scattering. Therefore, we evaluate the performance of a Monolithic Active Pixel Sensor DED for the characterization of SRO and MRO in nanoscale volumes of amorphous materials, using SiO2 and Ta2O5 thin films as test cases. The performance of the detector is compared systematically to electron scattering measurements recorded on an indirect detector (CCD) using 200 keV electrons and electron doses starting at approximately 500e-Å2 . In addition, the effects of sample cooling and energy-filtering on the measured SRO of the oxides were investigated. We demonstrate that the performance of the DED resulted in improved SRO characterization in comparison to that obtained from the CCD measurements. The DED enabled to achieve a larger measured maximal scattering vector, â¼16.51Å compared to â¼151Å, for the CCD. Furthermore, an improved signal-to-noise ratio of approximately two-fold was observed across all spatial frequencies for both 200 keV and 80 keV electrons. These improvements are shown to result from the superior DQE of the DED. Consequently, the DED measurements enabled to determine the coordination numbers of atomic bonds more accurately. We expect that further benefits of the DED for S/MRO characterization will be highlighted for ultra- sensitive materials that cannot withstand electron doses above several e-Å2 .
RESUMO
Controlling the morphology of crystalline materials is challenging, as crystals have a strong tendency toward thermodynamically stable structures. Yet, organisms form crystals with distinct morphologies, such as the plate-like guanine crystals produced by many terrestrial and aquatic species for light manipulation. Regulation of crystal morphogenesis was hypothesized to entail physical growth restriction by the surrounding membrane, combined with fine-tuned interactions between organic molecules and the growing crystal. Using cryo-electron tomography of developing zebrafish larvae, we found that guanine crystals form via templated nucleation of thin leaflets on preassembled scaffolds made of 20-nm-thick amyloid fibers. These leaflets then merge and coalesce into a single plate-like crystal. Our findings shed light on the biological regulation of crystal morphogenesis, which determines their optical properties.
Assuntos
Guanina , Peixe-Zebra , AnimaisRESUMO
In the pursuit of magneto-electronic systems nonstoichiometric magnetic elements commonly introduce disorder and enhance magnetic scattering. We demonstrate the growth of (EuIn)As shells, with a unique crystal structure comprised of a dense net of Eu inversion planes, over InAs and InAs1-xSbx core nanowires. This is imaged with atomic and elemental resolution which reveal a prismatic configuration of the Eu planes. The results are supported by molecular dynamics simulations. Local magnetic and susceptibility mappings show magnetic response in all nanowires, while a subset bearing a DC signal points to ferromagnetic order. These provide a mechanism for enhancing Zeeman responses, operational at zero applied magnetic field. Such properties suggest that the obtained structures can serve as a preferred platform for time-reversal symmetry broken one-dimensional states including intrinsic topological superconductivity.
RESUMO
Nanotubes of transition metal dichalcogenides such as WS2 and MoS2 offer unique quasi-1D properties and numerous potential applications. Replacing sulfur by selenium would yield ternary WS2(1-x)Se2x (0 ≤ x ≤ 1; WSSe) nanotubes, which are expected to reveal strong modulation in their absorption edge as a function of selenium content, xSe. Solid WO2.72 oxide nanowhiskers were employed as a sacrificial template to gain a high yield of the nanotubes with a rather uniform size distribution. Though sulfur and selenium belong to the same period, their chemical reactivity with oxide nanowhiskers differed appreciably. Here, the closed ampoule technique was utilized to achieve the completion of the solid-vapor reaction in short time scales instead of the conventional flow reactor method. The structure and chemical composition of the nanotubes were analyzed in detail. X-ray and electron diffractions indicated a systematic modulation of the WSSe lattice upon increasing the selenium content. Detailed chemical mapping showed that the sulfur and selenium atoms are distributed in random positions on the anion lattice site of the nanotubes. The optical excitonic features and absorption edges of the WSSe nanotubes do not vary linearly with the composition xSe, which was further confirmed by density functional theory calculations. The WSSe nanotubes were shown to exhibit strong light-matter interactions forming exciton-polariton quasiparticles, which was corroborated by finite-difference time-domain simulations. Transient absorption analysis permitted following the excited state dynamics and elucidating the mechanism of the strong coupling. Thus, nanotubes of the ternary WSSe alloys offer strong band gap tunability, which would be useful for multispectral vision devices and other optoelectronic applications.
RESUMO
Structural analysis of beam-sensitive materials by transmission electron microscopy (TEM) represents a significant challenge, as high-resolution TEM (HRTEM) requires high electron doses that limit its applicability to stable inorganic materials. Beam-sensitive materials, e.g., organic crystals, must be imaged under low dose conditions, leading to problematic contrast interpretation and loss of fine structural details. Here, HRTEM imaging of organic crystalline materials with near-atomic resolution of up to 1.6 Å is described, which enables real-space studies of crystal structures, as well as observation of co-existing polymorphs, crystal defects, and atoms. This is made possible by a low-dose focal-series reconstruction methodology, which provides HRTEM images where contrast reflects true object structure and can be performed on contemporary cryo-EM instruments available to many research institutions. Copper phthalocyanine (CuPc), a perchlorinated analogue of CuPc, and indigo crystalline films are imaged. In the case of indigo crystals, co-existing polymorphs and individual atoms (carbonyl oxygen) can be observed. In the case of CuPc, several polymorphs are observed, including a new one, for which the crystal structure is found based on direct in-focus imaging, accomplishing real-space crystal structure elucidation. Such direct analysis can be transformative for structure studies of organic materials.
RESUMO
Directing crystal growth into complex morphologies is challenging, as crystals tend to adopt thermodynamically stable morphologies. However, many organisms form crystals with intricate morphologies, as exemplified by coccoliths, microscopic calcite crystal arrays produced by unicellular algae. The complex morphologies of the coccolith crystals were hypothesized to materialize from numerous crystallographic facets, stabilized by fine-tuned interactions between organic molecules and the growing crystals. Using electron tomography, we examined multiple stages of coccolith development in three dimensions. We found that the crystals express only one set of symmetry-related crystallographic facets, which grow differentially to yield highly anisotropic shapes. Morphological chirality arises from positioning the crystals along specific edges of these same facets. Our findings suggest that growth rate manipulations are sufficient to yield complex crystalline morphologies.
Assuntos
Haptófitas , Anisotropia , Carbonato de Cálcio/química , Cristalização , Cristalografia , Haptófitas/crescimento & desenvolvimento , Haptófitas/ultraestruturaRESUMO
Misfit layered compounds (MLCs) MX-TX2, where M, T = metal atoms and X = S, Se, or Te, and their nanotubes are of significant interest due to their rich chemistry and unique quasi-1D structure. In particular, LnX-TX2 (Ln = rare-earth atom) constitute a relatively large family of MLCs, from which nanotubes have been synthesized. The properties of MLCs can be tuned by the chemical and structural interplay between LnX and TX2 sublayers and alloying of each of the Ln, T, and X elements. In order to engineer them to gain desirable performance, a detailed understanding of their complex structure is indispensable. MLC nanotubes are a relative newcomer and offer new opportunities. In particular, like WS2 nanotubes before, the confinement of the free carriers in these quasi-1D nanostructures and their chiral nature offer intriguing physical behavior. High-resolution transmission electron microscopy in conjunction with a focused ion beam are engaged to study SmS-TaS2 nanotubes and their cross-sections at the atomic scale. The atomic resolution images distinctly reveal that Ta is in trigonal prismatic coordination with S atoms in a hexagonal structure. Furthermore, the position of the sulfur atoms in both the SmS and the TaS2 sublattices is revealed. X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and X-ray absorption spectroscopy are carried out. These analyses conclude that charge transfer from the Sm to the Ta atoms leads to filling of the Ta 5d z 2 level, which is confirmed by density functional theory (DFT) calculations. Transport measurements show that the nanotubes are semimetallic with resistivities in the range of 10-4 Ω·cm at room temperature, and magnetic susceptibility measurements show a superconducting transition at 4 K.
RESUMO
SignificanceSurface engineering of halide perovskites (HaPs), semiconductors with amazing optoelectronic properties, is critical to improve the performance and ambient stability of HaP-based solar cells and light emitting diodes (LEDs). Ultrathin layers of two-dimensional (2D) analogs of the three-dimensional (3D) HaPs are particularly attractive for this because of their chemical similarities but higher ambient stability. But do such 2D/3D interfaces actually last, given that ions in HaPs move readily-i.e., what happens at those interfaces on the atomic scale? A special electron microscopy, which as a bonus also reveals the true conditions for nondestructive analysis, shows that the large ions that are a necessary part of the 2D films can move into the 3D HaP, a fascinating illustration of panta rei in HaPs.
RESUMO
Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO3. However, the realization of large-area true 2D (single to few atom layers thick) MoO3 is yet to be achieved. Here, we demonstrate a facile route to obtain wafer-scale monolayer amorphous MoO3 using 2D MoS2 as a starting material, followed by UV-ozone oxidation at a substrate temperature as low as 120 °C. This simple yet effective process yields smooth, continuous, uniform, and stable monolayer oxide with wafer-scale homogeneity, as confirmed by several characterization techniques, including atomic force microscopy, numerous spectroscopy methods, and scanning transmission electron microscopy. Furthermore, using the subnanometer MoO3 as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with a low voltage operation and a high ON/OFF ratio. These results (potentially extendable to other TMOs) will enable further exploration of subnanometer stoichiometric MoO3, extending the frontiers of ultrathin flexible oxide materials and devices.
RESUMO
Colloidal inorganic nanofluorides have aroused great interest for various applications with their development greatly accelerated thanks to advanced synthetic approaches. Nevertheless, understanding their colloidal evolution and the factors that affect their dispersion could improve the ability to rationally design them. Here, using a multimodal in situ approach that combines DLS, NMR, and cryogenic-TEM, we elucidate the formation dynamics of nanofluorides in water through a transient aggregative phase. Specifically, we demonstrate that ligand-cation interactions mediate a transient aggregation of as-formed CaF2 nanocrystals (NCs) which governs the kinetics of the colloids' evolution. These observations shed light on key stages through which CaF2 NCs are dispersed in water, highlighting fundamental aspects of nanofluorides formation mechanisms. Our findings emphasize the roles of ligands in NCs' synthesis beyond their function as surfactants, including their ability to mediate colloidal evolution by complexing cationic precursors, and should be considered in the design of other types of NCs.
Assuntos
Fluoretos , Nanopartículas , Cátions , Coloides/química , Ligantes , Nanopartículas/químicaRESUMO
Recent advances in scanning transmission electron microscopy (STEM) have rekindled interest in multi-channel detectors and prompted the exploration of unconventional scan patterns. These emerging needs are not yet addressed by standard commercial hardware. The system described here incorporates a flexible scan generator that enables exploration of low-acceleration scan patterns, while data are recorded by a scalable eight-channel array of nonmultiplexed analog-to-digital converters. System integration with SerialEM provides a flexible route for automated acquisition protocols including tomography. Using a solid-state quadrant detector with additional annular rings, we explore the generation and detection of various STEM contrast modes. Through-focus bright-field scans relate to phase contrast, similarly to wide-field TEM. More strikingly, comparing images acquired from different off-axis detector elements reveals lateral shifts dependent on defocus. Compensation of this parallax effect leads to decomposition of integrated differential phase contrast (iDPC) to separable contributions relating to projected electric potential and to defocus. Thus, a single scan provides both a computationally refocused phase contrast image and a second image in which the signed intensity, bright or dark, represents the degree of defocus.