Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Struct ; 1264: 133190, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35531369

RESUMO

This work explores the study of a synthesized nickel complex as a possible inhibitor against the main protease (Mpro) of the recent emerging coronavirus disease (COVID-19). Overall, the template reaction of 3-acetyl-2-hydroxy-6-methyl-4H-pyran-4-one with nickel(II) chloride hexahydrate in N,N-dimethylformamide (DMF) medium leads to the formation of neutral nickel complex. This resulting complex is formulated as [Ni(DHA)2(DMF)2] on the basis of FT-IR, UV-Vis., single-crystal X-ray diffraction analysis, magnetic susceptibility and CV measurements as well as DFT quantum chemical calculations. Its single crystal suggests was found to be surrounded by the both pairs of molecules of DHA and DMF through six oxygen atoms with octahedral coordination sphere. The obtained magnetic susceptibilities are positive and agree with its paramagnetic state. In addition to the experimental investigations, optimized geometry, spectroscopic and electronic properties were also performed using DFT calculation with B3LYP/6-31G(d,p) level of theory. The nonlinear optical (NLO) properties of this complex are again examined. Some suitable quantum descriptors (EHOMO, ELUMO, Energy gap, Global hardness), Milliken atomic charge, Electrophilic potion and Molecular Electrostatic Potential) have been elegantly described. Molecular docking results demonstrated that the docked nickel complex displayed remarkable binding energy with Mpro. Besides, important molecular properties and ADME pharmacokinetic profiles of possible Mpro inhibitors were assessed by in silico prediction.

2.
J Mol Struct ; 1263: 133032, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35431327

RESUMO

The B.1.617.2 Delta variant is considered to be the most infectious of all SARS-CoV2 variants. Here, an attempt has been made through in-silico screening of 55 bioactive compounds from two selected plants, Saussurea costus and Saussurea involucrata as potential inhibitors of two viral proteases, main protease Mpro (PDB ID:6LU7) and the RBD of SGP of Sars-CoV-2 B1.617.2 Delta variant (PDB ID:7ORB) where the binding energy, molecular interactions, ADMET/Tox, chemical descriptors and Quantum-Chemical Calculations were explored. Molecular docking results demonstrated that the three top docked compounds formed relatively stable complexes within the active site and displayed remarkable binding energy in the order of Tangshenoside III, Rutin and Hesperidin (-9.35, -9.14 and -8.57 kcal/mol, respectively) with Mpro and Rutin, Tangshenoside III and Hesperidin (-9.07, -7.71 and -7.57 kcal/mol) with RBD of SGP. These compounds are non-Mutagen and non-carcinogen. Therefore, according to the Lipinski's Rule of Five they exhibited three violations concerning hydrogen acceptor, donor and molecular weight. However, based on the Quantum-Chemical Calculations results the selected ligands have effective reactivity, as they showed lower band gaps. The difference of the ELUMO and EHOMO was low, ranging from 0.0639 to 0.0978 a.u, implying the strong affinity of these inhibitors towards the target proteins. Among the three inhibitors, Rutin exhibited higher reactivity against two viral proteases, main protease (Mpro) and the Sars-CoV-2 B1.617.2, as the band energy gap was lowest among all the three phytochemicals, 0.0639 a.u This could indicate that Rutincan be potential anti-viral drug candidates against the existing SARS-CoV-2, the B.1.617.2 Delta variant.

3.
Microb Pathog ; 126: 56-62, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30393116

RESUMO

This study aimed to investigate the total phenolic content (TPC), the identification of the common compounds by HPLC-ESI-MS and HPLC-ESI-MS-TOF and the inhibitory effects against class A-type ß-lactamase (GES-22 variant, produced recombinantly) in methanolic extracts (MEs) of four Algerian seaweeds [Ulva intestinalis, Codium tomentosum, Dictyota dichotoma and Halopteris scoparia]. The TPC varied among the four species, ranging between 0.93 ±â€¯0.65 and 2.66 ±â€¯1.33 mg GAEs/g DW. C.tomentosum had higher total phenol content than other seaweeds while, all of them inhibited uncompetitively GES-22 activity in a dose-dependent manner. Nitrocefin was used as chromogenic substrate to evaluate the inhibitory effect on GES-22. The methanolic extract of D.dichotoma exhibited significant inhibitory effect on GES-22 (IC50 = 13.01 ±â€¯0.046 µg/mL) more than clavulanate, sulbactam and tazobactam (classical ß-lactam inhibitors) (IC50 = 68.38 ±â€¯0.17 µg/mL, 52.68 ±â€¯0.64 µg/mL, and 29.94 ±â€¯0.01 µg/mL, respectively). IC50 of the other ME of U.intestinalis, C.tomentosum, and H.scoparia were 16.87 ±â€¯0.10 µg/mL, 16.54 ±â€¯0.048 µg/mL, and 25.72 ±â€¯0.15 µg/mL, respectively. Except H. scoparia, other three seaweed extracts showed almost two times or more inhibition on GES-22. Furthermore, four common compounds in these MEs were identified, α-linolenic acid (C18:3ω3), linoleic acid (C18:2ω6), oleic acid (C18:1ω9), the eicosanoid precursors ''arachidonic acid'' (C20:4ω6). Baicalein (C15H10O5) was identified in U.intestinalis and D.dichotoma seaweeds. The fact that all seaweed extracts inhibited the GES-22 better than commercial samples makes these seaweeds candidate for discovering new inhibitors against ß-lactamases. Besides that, they contain important components with potential health benefits.


Assuntos
Extratos Vegetais/antagonistas & inibidores , Alga Marinha/química , beta-Lactamases/efeitos dos fármacos , Argélia , Ácido Araquidônico/química , Clorófitas/química , Ensaios Enzimáticos , Flavanonas/química , Mar Mediterrâneo , Metanol , Ácido Oleico/química , Phaeophyceae/química , Fenóis/química , Ácido alfa-Linolênico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA