Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Prog ; 33(5): 1393-1400, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28722325

RESUMO

Most biopharmaceutical drugs, especially monoclonal antibodies (mAbs), bispecific antibodies (BsAbs) and Fc-fusion proteins, are expressed using Chinese Hamster Ovary (CHO) cell lines. CHO cells typically yield high product titers and high product quality. Unfortunately, CHO cell lines also generate high molecular weight (HMW) aggregates of the desired product during cell culture along with CHO host cell protein (HCP) and CHO DNA. These immunogenic species, co-purified during Protein A purification, must be removed in a multi-step purification process. Our colleagues have reported the use of a novel polymer-mediated flocculation step to simultaneously reduce HMW, HCP and DNA from stable CHO cell cultures prior to Protein A purification. The objective of this study was to evaluate this novel "smart polymer" (SmP) in a high throughput antibody discovery workflow using transiently transfected CHO cultures. SmP treatment of 19 different molecules from four distinct molecular categories (human mAbs, murine mAbs, BsAbs and Fabs) with 0.1% SmP and 25 mM stimulus resulted in minimal loss of monomeric protein. Treatment with SmP also demonstrated a variable, concentration-dependent removal of HMW aggregates after Protein A purification. SmP treatment also effectively reduced HCP levels at each step of mAb purification with final HCP levels being several fold lower than the untreated control. Interestingly, SmP treatment was able to significantly reduce high concentrations of artificially spiked levels of endotoxin in the cultures. In summary, adding a simple flocculation step to our existing transient CHO process reduced the downstream purification burden to remove impurities and improved final product quality. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1393-1400, 2017.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Floculação , Polímeros/química , Proteínas Recombinantes/normas , Animais , Células CHO , Cricetinae , Cricetulus , Endotoxinas/análise , Endotoxinas/química , Endotoxinas/isolamento & purificação , Humanos , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Proteínas/análise , Proteínas/química , Proteínas/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação
2.
Biotechnol Prog ; 33(2): 469-477, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977915

RESUMO

IgG bispecific antibodies (BsAbs) represent one of the preferred formats for bispecific antibody therapeutics due to their native-like IgG properties and their monovalent binding to each target. Most reported studies utilized transient expression in HEK293 cells to produce BsAbs. However, the expression of biotherapeutic molecules using stable CHO cell lines is commonly used for biopharmaceutical manufacturing. Unfortunately, limited information is available in the scientific literature on the expression of BsAbs in CHO cell lines. In this study we describe an alternative approach to express the multiple components of IgG BsAbs using a single plasmid vector (quad vector). This single plasmid vector contains both heavy chain genes and both light chain genes required for the expression and assembly of the IgG BsAb, along with a selectable marker. We expressed, purified, and characterized four different IgG BsAbs or "hetero-mAbs" using transient CHO expression and stable CHO minipools. Transient CHO titers ranged from 90 to 160 mg/L. Stable CHO titers ranged from 0.4 to 2.3 g/L. Following a simple Protein A purification step, the percentage of correctly paired BsAbs ranged from 74% to 98% as determined by mass spectrometry. We also found that information generated from transient CHO expression was similar to information generated using stable CHO minipools. In conclusion, the quad vector approach represents a simple, but effective, alternative approach for the generation of IgG BsAbs in both transient CHO and stable CHO expression systems. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:469-477, 2017.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Proliferação de Células/fisiologia , Clonagem Molecular/métodos , Imunoglobulina G/imunologia , Engenharia de Proteínas/métodos , Transfecção/métodos , Animais , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Cricetulus , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
3.
Biotechnol Lett ; 37(12): 2379-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26298077

RESUMO

OBJECTIVE: To develop a simple approach to increase titers of transient gene expression in CHO cells without relying on host cell line engineering as recent reports suggest that for PEI-mediated transfections, under optimized conditions, DNA delivery into cells and nuclei is not the limiting factor. RESULTS: N, N-Dimethyl acetamide (DMA) was utilized to enhance transcription. To target post-transcriptional events, we evaluated the co-expression of various genes involved in the unfolded protein response, namely XBP1S, ATF4, CHOP and HSPA5. XBP1S overexpression led to a 15-85 % increase in titer for multiple therapeutic proteins. Mechanistic studies confirmed that addition of 0.125 % DMA increased transgene mRNA levels as expected. However, overexpression of XBP1S had no effect on transgene mRNA levels, indicating that it influenced post-transcriptional events. Since DMA and XBP1S targeted different pathways, the combination of the two approaches led to an additive improvement in protein titer (150-250 % titer increase). CONCLUSION: Transcriptional and post-transcriptional pathways of transient gene expression can be targeted to increase titers without resorting to host cell line engineering in a simple, short, 7 day production process.


Assuntos
Expressão Gênica , Proteínas Recombinantes/biossíntese , Animais , Células CHO , Cricetulus , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Proteínas Recombinantes/genética , Transcrição Gênica/efeitos dos fármacos
4.
Biotechnol Prog ; 31(1): 239-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25403790

RESUMO

A high-cell-density transient transfection system was recently developed in our laboratory based on a CHO-GS-KO cell line. This method yields monoclonal antibody titers up to 350 mg/L from a simple 7-day process, in volumes ranging from 2 mL to 2 L. By performing transfections in 24-deep-well plates, a large number of mAbs can be expressed simultaneously. We coupled this new high-throughput transfection process to a semiautomated protein A purification process. Using a Biomek FX(p) liquid handling robot, up to 72 unique mAbs can be simultaneously purified. Our primary goal was to obtain >0.25 mg of purified mAb at a concentration of >0.5 mg/mL, without any concentration or buffer-exchange steps. We optimized both the batch-binding and the batch elution steps. The length of the batch-binding step was important to minimize mAb losses in the flowthrough fraction. The elution step proved to be challenging to simultaneously maximize protein recovery and protein concentration. We designed a variable volume elution strategy based on the average supernatant titer. Finally, we present two case studies. In the first study, we produced 56 affinity maturation mAb variants at an average yield of 0.33 ± 0.05 mg (average concentration of 0.65 ± 0.10 mg/mL). In a second study, we produced 42 unique mAbs, from an early-stage discovery effort, at an average yield of 0.79 ± 0.31 mg (average concentration of 1.59 ± 0.63 mg/mL). The combination of parallel high-yielding transient transfection and semiautomated high-throughput protein A purification represents a valuable mAb drug discovery tool.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Animais , Anticorpos Monoclonais/análise , Células CHO , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
5.
Biotechnol Bioeng ; 112(5): 977-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25502369

RESUMO

Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the volumetric productivity of TGE has improved significantly over the past decade, most methods involve extensive cell line engineering and plasmid vector optimization in addition to long fed batch cultures lasting up to 21 days. Our colleagues have recently reported the development of a CHO K1SV GS-KO host cell line. By creating a bi-allelic glutamine synthetase knock out of the original CHOK1SV host cell line, they were able to improve the efficiency of generating high producing stable CHO lines for drug product manufacturing. We developed a TGE method using the same CHO K1SV GS-KO host cell line without any further cell line engineering. We also refrained from performing plasmid vector engineering. Our objective was to setup a TGE process to mimic protein quality attributes obtained from stable CHO cell line. Polyethyleneimine (PEI)-mediated transfections were performed at high cell density (4 × 10(6) cells/mL) followed by immediate growth arrest at 32 °C for 7 days. Optimizing DNA and PEI concentrations proved to be important. Interestingly, found the direct transfection method (where DNA and PEI were added sequentially) to be superior to the more common indirect method (where DNA and PEI are first pre-complexed). Moreover, the addition of a single feed solution and a polar solvent (N,N dimethylacetamide) significantly increased product titers. The scalability of process from 2 mL to 2 L was demonstrated using multiple proteins and multiple expression volumes. Using this simple, short, 7-day TGE process, we were able to successfully produce 54 unique proteins in a fraction of the time that would have been required to produce the respective stable CHO cell lines. The list of 54 unique proteins includes mAbs, bispecific antibodies, and Fc-fusion proteins. Antibody titers of up to 350 mg/L were achieved with the simple 7-day process. Titers were increased to 1 g/L by extending the culture to 16 days. We also present two case studies comparing product quality of material generated by transient HEK293, transient CHO K1SV GS-KO, and stable CHO K1SV KO pool. Protein from transient CHO was more representative of stable CHO protein compared to protein produced from HEK293.


Assuntos
Células CHO/metabolismo , Glutamato-Amônia Ligase/genética , Transfecção/instrumentação , Animais , Anticorpos Monoclonais/genética , Células CHO/citologia , Contagem de Células , Cricetulus , DNA/administração & dosagem , DNA/genética , Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Polietilenoimina/metabolismo , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA