Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Ind Electron ; 70(10): 10333-10343, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37323755

RESUMO

Robotic ultrasonography potentially acts as an essential aid to medical diagnosis. To overcome the limitations in robotic ultrasonography, in this paper, we proposed a novel self-adaptive parallel manipulator (SAPM) that can automatically adjust the ultrasound (US) probe pose to adapt to various contours of scanned areas, provide approximate constant operating forces/torques, achieve mechanical measurement, and cushion undesired produced forces. A novel parallel adjustment mechanism is proposed to attain automatic pose adjustment with 3 degrees of freedom (DOFs). This mechanism enables the US probe to adapt to different scanned areas and to perform the scanning with approximate constant forces and torques. Besides, we present a mechanical measurement and safety protection method that can be integrated into the SAPM and used as operation status monitoring and early warning during scanning procedures by capturing operating forces and torques. Experiments were carried out to calibrate the measurement and buffer units and evaluate the performance of the SAPM. Experimental results show the ability of the SAPM to provide 3-DoFs motion and operating force/torque measurement and automatically adjust the US probe pose to capture US images of equally good quality compared to a manual sonographer scan. Moreover, it has characteristics similar to soft robots that could significantly improve operation safety, and could be extended to some other engineering or medical applications.

2.
IEEE Trans Instrum Meas ; 72: 1-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323850

RESUMO

Medical ultrasound is of increasing importance in medical diagnosis and intraoperative assistance and possesses great potential advantages when integrated with robotics. However, some concerns, including the operation efficiency, operation safety, image quality, and comfort of patients, remain after introducing robotics into medical ultrasound. In this paper, an ultrasound robot integrating a force control mechanism, force/torque measurement mechanism, and online adjustment method, is proposed to overcome the current limitations. The ultrasound robot can measure operating forces and torques, provide adjustable constant operating forces, eliminate great operating forces introduced by accidental operations, and achieve various scanning depths based on clinical requirements. The proposed ultrasound robot would potentially facilitate sonographers to find the targets quickly, improve operation safety and efficiency, and decrease patients' discomfort. Simulations and experiments were carried out to evaluate the performance of the ultrasound robot. Experimental results show that the proposed ultrasound robot is able to detect operating force in the z-direction and torques around the x- and y- directions with errors of 3.53% F.S., 6.68% F.S., and 6.11% F.S., respectively, maintain the constant operating force with errors of less than 0.57N, and achieve various scanning depths for target searching and imaging. This proposed ultrasound robot has good performance and would potentially be used in medical ultrasound.

4.
IEEE Trans Biomed Eng ; 67(8): 2215-2229, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31804926

RESUMO

OBJECTIVE: In this work we address limitations in state-of-the-art ultrasound robots by designing and integrating a novel soft robotic system for ultrasound imaging. It employs the inherent qualities of soft fluidic actuators to establish safe, adaptable interaction between ultrasound probe and patient. METHODS: We acquire clinical data to determine the movement ranges and force levels required in prenatal foetal ultrasound imaging and design the soft robotic end-effector accordingly. We verify its mechanical characteristics, derive and validate a kinetostatic model and demonstrate controllability and imaging capabilities on an ultrasound phantom. RESULTS: The soft robot exhibits the desired stiffness characteristics and is able to reach 100% of the required workspace when no external force is present, and 95% of the workspace when considering its compliance. The model can accurately predict the end-effector pose with a mean error of 1.18±0.29 mm in position and 0.92±0.47° in orientation. The derived controller is, with an average position error of 0.39 mm, able to track a target pose efficiently without and with externally applied loads. Ultrasound images acquired with the system are of equally good quality compared to a manual sonographer scan. CONCLUSION: The system is able to withstand loads commonly applied during foetal ultrasound scans and remains controllable with a motion range similar to manual scanning. SIGNIFICANCE: The proposed soft robot presents a safe, cost-effective solution to offloading sonographers in day-to-day scanning routines. The design and modelling paradigms are greatly generalizable and particularly suitable for designing soft robots for physical interaction tasks.


Assuntos
Robótica , Desenho de Equipamento , Humanos , Movimento (Física) , Imagens de Fantasmas , Ultrassonografia
5.
Appl Sci (Basel) ; 9(9): 1900, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32754346

RESUMO

Robotic systems have great potential to assist ultrasound (US) examination. Currently, the safety management method to limit the force that a US robot can apply mostly relies on force sensing and software-based algorithms. This causes the concern that the potential failure of sensors, electrical systems, or software could lead to patient injuries. In this paper, we investigated a customized spring-loaded ball clutch joint designed for a newly developed US robot to passively limit the force applied. The working mechanism of the clutch was modelled and the kinematic-based analysis was performed to understand the variation of the limited force at different postures of the robot. The triggering torque of the clutch was found to be 3928 N·mm, which results in the mean limited force 22.10 ± 1.76 N at the US probe end based on potential postures. The real measurement of the implemented design indicated that the limited force could be set between 17 and 24 N at the neutral posture depending on the preload. With the maximum preload, the mean limited force was found to be 21.98 ± 0.96 N based on 30 repeated measurements. The practically measured results meet the expectation from the theoretical calculation, and the resulting small variation has indicated a good repeatability of the clutch. Based on this evidence, it is concluded that the proposed clutch meets the design aim that it can limit the force applied within a safe range while at the same time ensuring that the required force is applied at different postures.

6.
IEEE J Transl Eng Health Med ; 2: 1800615, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27170868

RESUMO

Delayed-enhancement magnetic resonance imaging (DE-MRI) is an effective technique for detecting left atrial (LA) fibrosis both pre and postradiofrequency ablation for the treatment of atrial fibrillation. Fixed thresholding models are frequently utilized clinically to segment and quantify scar in DE-MRI due to their simplicity. These methods fail to provide a standardized quantification due to interobserver variability. Quantification of scar can be used as an endpoint in clinical studies and therefore standardization is important. In this paper, we propose a segmentation algorithm for LA fibrosis quantification and investigate its performance. The algorithm was validated using numerical phantoms and 15 clinical data sets from patients undergoing LA ablation. We demonstrate that the approach produces good concordance with expert manual delineations. The method offers a standardized quantification technique for evaluation and interpretation of DE-MRI scans.

7.
Biomed Eng Online ; 7: 5, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18218069

RESUMO

BACKGROUND: Freehand 3D ultrasound is a powerful imaging modality with many potential applications. However, its reliance on add-on position sensors, which can be expensive, obtrusive and difficult to calibrate, is a major drawback. Alternatively, freehand 3D ultrasound can be acquired without a position sensor using image-based techniques. Sensorless reconstructions exhibit good fine scale detail but are prone to tracking drift, resulting in large scale geometrical distortions. METHOD: We investigate an alternative position sensor, the Xsens MT9-B, which is relatively unobtrusive but measures orientation only. We describe a straightforward approach to calibrating the sensor, and we measure the calibration precision (by repeated calibrations) and the orientation accuracy (using independent orientation measurements). We introduce algorithms that allow the MT9-B potentially to correct both linear and angular drift in sensorless reconstructions. RESULTS: The MT9-B can be calibrated to a precision of around 1 degrees . Reconstruction accuracy is also around 1 degrees . The MT9-B was able to eliminate angular drift in sensorless reconstructions, though it had little impact on linear drift. In comparison, six degree-of-freedom drift correction was shown to produce excellent reconstructions. CONCLUSION: Gold standard freehand 3D ultrasound acquisition requires the synthesis of image-based techniques, for good fine scale detail, and position sensors, for good large scale geometrical accuracy. A hybrid system incorporating the MT9-B offers an attractive compromise between quality and ease of use. The position sensor is unobtrusive and the system is capable of faithful acquisition, with the one exception of linear drift in the elevational direction.


Assuntos
Algoritmos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/normas , Transdutores , Ultrassonografia/instrumentação , Ultrassonografia/normas , Interface Usuário-Computador , Calibragem , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia/métodos , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA