Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540255

RESUMO

Therapeutic antibodies (Abs) which act on a broader range of epitopes may provide more durable protection against the genetic drift of a target, typical of viruses or tumors. When these Abs exist concurrently on the targeted antigen, several mechanisms of action (MoAs) can be engaged, boosting therapeutic potency. This study selected combinations of four and five Abs with non- or partially overlapping epitopes to the SARS-CoV-2 spike glycoprotein, on or outside the crucial receptor binding domain (RBD), to offer resilience to emerging variants and trigger multiple MoAs. The combinations were derived from a pool of unique-sequence scFv Ab fragments retrieved from two SARS-CoV-2-naïve human phage display libraries. Following recombinant expression to full-length human IgG1 candidates, a biolayer interferometric analysis mapped epitopes to bins and confirmed that up to four Abs from across the bins can exist simultaneously on the spike glycoprotein trimer. Not all the bins of Abs interfered with the spike protein binding to angiotensin converting enzyme 2 (ACE2) in competitive binding assays, nor neutralized the pseudovirus or authentic virus in vitro, but when combined in vivo, their inclusion resulted in a much stronger viral clearance in the lungs of intranasally challenged hamsters, compared to that of those treated with mono ACE2 blockers. In addition, the Ab mixtures activated in vitro reporter cells expressing Fc-gamma receptors (FcγRs) involved in antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). The best four-Ab combination neutralized seventeen variants of concern from Wuhan-Hu1 to Omicron BA.4/BA.5 in vitro.

2.
Blood Cells Mol Dis ; 102: 102760, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37267696

RESUMO

Hematopoiesis and lineage commitment are regulated by several conserved cell-intrinsic signaling pathways, including MAPKs and ß-catenin/TCF/LEF. The Inhibitor of MyoD Family A (I-MFA), a transcriptional repressor and tumor suppressor gene, interacts with these pathways and is dysregulated in chronic and acute myeloid leukemias, suggesting it may play a role in development and differentiation during hematopoiesis. To study this, immune cell populations in the bone marrow (BM) and periphery were analyzed in mice lacking Mdfi, encoding I-MFA (I-MFA-/-), and wild type (WT) controls. I-MFA-/- mice had reduced spleen and BM cellularity, with significant hyposplenism, compared to WT mice. In blood, total red blood cells and platelet counts were significantly reduced in I-MFA-/- mice, accompanied by a reduction in megakaryocyte (MK)/erythrocyte progenitor cells and an increase in myeloid progenitors in BM compared to WT mice. The K562 cell line exhibits PMA-induced MK differentiation, and shRNA knockdown of I-MFA resulted in reduced differentiation compared to control, with an increase and prolongation in phospho-JNK and phospho-ERK signaling. Overexpression of I-MFA promoted MK differentiation. These results suggest I-MFA plays a cell-intrinsic role in the response to differentiation signals, an effect that can be explored in the context of hematological cancers or other blood proliferative disorders.


Assuntos
Medula Óssea , Megacariócitos , Camundongos , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Hematopoese , Células da Medula Óssea/patologia , Linhagem da Célula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA