Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroimaging ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858847

RESUMO

BACKGROUND AND PURPOSE: Conclusions from prior literature regarding the impact of sex, age, and height on spinal cord (SC) MRI morphometrics are conflicting, while the effect of body weight on SC morphometrics has been found to be nonsignificant. The purpose of this case-control study is to assess the associations between cervical SC MRI morphometric parameters and age, sex, height, and weight to establish their potential role as confounding variables in a clinical study of people with multiple sclerosis (MS) compared to a cohort of healthy volunteers. METHODS: Sixty-nine healthy volunteers and 31 people with MS underwent cervical SC MRI at 3 Tesla field strength. Images were centered at the C3/C4 intervertebral disc and processed using Spinal Cord Toolbox v.4.0.2. Mixed-effects linear regression models were used to evaluate the effects of biological variables and disease status on morphometric parameters. RESULTS: Sex, age, and height had significant effects on cord and gray matter (GM) cross-sectional area (CSA) as well as the GM:cord CSA ratio. There were no significant effects of body weight on morphometric parameters. The effect of MS disease duration on cord CSA in the C4 level was significant when controlling for all other variables. CONCLUSIONS: Studies of disease-related changes in SC morphometry should control for sex, age, and height to account for physiological variation.

2.
Mult Scler J Exp Transl Clin ; 9(4): 20552173231211396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021451

RESUMO

Background: Imaging investigation of cerebrospinal fluid (CSF) in multiple sclerosis (MS) is understudied. Development of noninvasive methods to detect pathological CSF changes would have a profound effect on MS diagnosis and would offer insight into MS pathophysiology and mechanisms of neurological impairment. Objective: We propose magnetization transfer (MT) MRI as a tool to detect macromolecular changes in spinal CSF. Methods: MT and quantitative MT (qMT) data were acquired in the cervical region in 27 people with relapsing-remitting multiple sclerosis (pwRRMS) and 38 age and sex-matched healthy controls (HCs). MT ratio (MTR), the B1, B0, and R1 corrected qMT-derived pool size ratio (PSR) were quantified in the spinal cord and CSF of each group. Results: Both CSF MTR and CSF qMT-derived PSR were significantly increased in pwRRMS compared to HC (p = 0.027 and p = 0.020, respectively). CSF PSR of pwRRMS was correlated to Expanded Disability Status Scale Scores (p = 0.045, R = 0.352). Conclusion: Our findings demonstrate increased CSF macromolecular content in pwRRMS and link CSF macromolecular content with clinical impairment. This highlights the potential role of CSF in processing products of demyelination.

3.
Neuroimage ; 284: 120460, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979894

RESUMO

BACKGROUND: Susceptibility-weighted imaging (SWI) has been extensively studied in the brain and in diseases of the central nervous system such as multiple sclerosis (MS) providing unique opportunities to visualize cerebral vasculature and disease-related pathology, including the central vein sign (CVS) and paramagnetic rim lesions (PRLs). However, similar studies evaluating SWI in the spinal cord of patients with MS remain severely limited. PURPOSE: Based on our previous findings of enlarged spinal vessels in MS compared to healthy controls (HCs), we developed high-field SWI acquisition and processing methods for the cervical spinal cord with application in people with MS (pwMS) and HCs. Here, we demonstrate the vascular variability between the two cohorts and unique MS lesion features in the cervical cord. METHODS: In this retrospective, exploratory pilot study conducted between March 2021 and March 2022, we scanned 12 HCs and 9 pwMS using an optimized non-contrast 2D T2*-weighted gradient echo sequence at 7 tesla. The overall appearance of the white and gray matter as well as tissue vasculature were compared between the two cohorts and areas of MS pathology in the patient group were assessed using both the magnitude and processed SWI images. RESULTS: We show improved visibility of vessels and more pronounced gray and white matter contrast in the MS group compared to HCs, hypointensities surrounding the cord in the MS cohort, and identify signal changes indicative of the CVS and paramagnetic rims in 66 % of pwMS with cervical spinal lesions. CONCLUSION: In this first study of SWI at 7T in the human spinal cord, SWI holds promise in advancing our understanding of disease processes in the cervical cord in MS.


Assuntos
Medula Cervical , Esclerose Múltipla , Humanos , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Retrospectivos , Projetos Piloto , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Imageamento por Ressonância Magnética/métodos
4.
Sci Rep ; 13(1): 18189, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875563

RESUMO

Functional MRI (fMRI) of the spinal cord is an expanding area of research with potential to investigate neuronal activity in the central nervous system. We aimed to characterize the functional connectivity features of the human lumbar spinal cord using resting-state fMRI (rs-fMRI) at 3T, using region-based and data-driven analysis approaches. A 3D multi-shot gradient echo resting-state blood oxygenation level dependent-sensitive rs-fMRI protocol was implemented in 26 healthy participants. Average temporal signal-to-noise ratio in the gray matter was 16.35 ± 4.79 after denoising. Evidence of synchronous signal fluctuations in the ventral and dorsal horns with their contralateral counterparts was observed in representative participants using interactive, exploratory seed-based correlations. Group-wise average in-slice Pearson's correlations were 0.43 ± 0.17 between ventral horns, and 0.48 ± 0.16 between dorsal horns. Group spatial independent component analysis (ICA) was used to identify areas of coherent activity¸ and revealed components within the gray matter corresponding to anatomical regions. Lower-dimensionality ICA revealed bilateral components corresponding to ventral and dorsal networks. Additional separate ICAs were run on two subsets of the participant group, yielding two sets of components that showed visual consistency and moderate spatial overlap. This work shows feasibility of rs-fMRI to probe the functional features and organization of the lumbar spinal cord.


Assuntos
Substância Cinzenta , Medula Espinal , Animais , Humanos , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiologia , Substância Cinzenta/diagnóstico por imagem , Corno Dorsal da Medula Espinal , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Voluntários Saudáveis , Encéfalo , Mapeamento Encefálico/métodos
5.
Neuroimage Clin ; 35: 103127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35917721

RESUMO

Focal lesions may affect functional connectivity (FC) of the ventral and dorsal networks in the cervical spinal cord of people with relapsing-remitting multiple sclerosis (RRMS). Resting-state FC can be measured using functional MRI (fMRI) at 3T. This study sought to determine whether alterations in FC may be related to the degree of damage in the normal-appearing tissue. Tissue integrity and FC in the cervical spinal cord were assessed with diffusion tensor imaging (DTI) and resting-state fMRI, respectively, in a group of 26 RRMS participants with high cervical lesion load, low disability, and minimally impaired sensorimotor function, and healthy controls. Lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in the normal-appearing white matter in the RRMS group relative to controls. Average FC in ventral and dorsal networks was similar between groups. Significant associations were found between higher FC in the dorsal sensory network and several DTI markers of pathology in the normal-appearing tissue. In the normal-appearing grey matter, dorsal FC was positively correlated with axial diffusivity (AD) (r = 0.46, p = 0.020) and mean diffusivity (MD) (r = 0.43, p = 0.032). In the normal-appearing white matter, dorsal FC was negatively correlated with FA (r = -0.43, p = 0.028) and positively correlated with RD (r = 0.49, p = 0.012), AD (r = 0.42, p = 0.037) and MD (r = 0.53, p = 0.006). These results suggest that increased connectivity, while remaining within the normal range, may represent a compensatory mechanism in response to structural damage in support of preserved sensory function in RRMS.


Assuntos
Medula Cervical , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Encéfalo , Medula Cervical/patologia , Imagem de Tensor de Difusão/métodos , Humanos , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA