RESUMO
Rationale: Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives: We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods: Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results: Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions: Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.
RESUMO
INTRODUCTION: Pathogenic variants in the gene encoding for BMPR2 are a major genetic risk factor for heritable pulmonary arterial hypertension. Owing to incomplete penetrance, deep phenotyping of unaffected carriers of a pathogenic BMPR2 variant through multimodality screening may aid in early diagnosis and identify susceptibility traits for future development of pulmonary arterial hypertension. METHODS: 28 unaffected carriers (44±16â years, 57% female) and 21 healthy controls (44±18â years, 48% female) underwent annual screening, including cardiac magnetic resonance imaging, transthoracic echocardiography, cardiopulmonary exercise testing and right heart catheterisation. Right ventricular pressure-volume loops were constructed to assess load-independent contractility and compared with a healthy control group. A transgenic Bmpr2Δ71Ex1/+ rat model was employed to validate findings from humans. RESULTS: Unaffected carriers had lower indexed right ventricular end-diastolic (79.5±17.6â mL·m-2 versus 62.7±15.3â mL·m-2; p=0.001), end-systolic (34.2±10.5â mL·m-2 versus 27.1±8.3â mL·m-2; p=0.014) and left ventricular end-diastolic (68.9±14.1â mL·m-2 versus 58.5±10.7â mL·m-2; p=0.007) volumes than control subjects. Bmpr2Δ71Ex1/+ rats were also observed to have smaller cardiac volumes than wild-type rats. Pressure-volume loop analysis showed that unaffected carriers had significantly higher afterload (arterial elastance 0.15±0.06â versus 0.27±0.08â mmHg·mL-1; p<0.001) and end-systolic elastance (0.28±0.07â versus 0.35±0.10â mmHg·mL-1; p=0.047) in addition to lower right ventricular pulmonary artery coupling (end-systolic elastance/arterial elastance 2.24±1.03 versus 1.36±0.37; p=0.006). During the 4-year follow-up period, two unaffected carriers developed pulmonary arterial hypertension, with normal N-terminal pro-brain natriuretic peptide and transthoracic echocardiography indices at diagnosis. CONCLUSION: Unaffected BMPR2 mutation carriers have an altered cardiac phenotype mimicked in Bmpr2Δ71Ex1/+ transgenic rats. Future efforts to establish an effective screening protocol for individuals at risk for developing pulmonary arterial hypertension warrant longer follow-up periods.
Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Ecocardiografia , Hipertensão Pulmonar , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Cateterismo Cardíaco , Estudos de Casos e Controles , Modelos Animais de Doenças , Teste de Esforço , Predisposição Genética para Doença , Heterozigoto , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Imageamento por Ressonância Magnética , Fenótipo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Ratos TransgênicosRESUMO
Birt-Hogg-Dubé (BHD) syndrome patients are uniquely susceptible to all renal tumour subtypes. The underlying mechanism of carcinogenesis is unclear. To study cancer development in BHD, we used human proximal kidney (HK2) cells and found that long-term folliculin (FLCN) knockdown was required to increase their tumorigenic potential, forming larger spheroids in non-adherent conditions. Transcriptomic and proteomic analysis uncovered links between FLCN, cell cycle control and the DNA damage response (DDR) machinery. HK2 cells lacking FLCN had an altered transcriptome profile with cell cycle control gene enrichment. G1/S cell cycle checkpoint signaling was compromised with heightened protein levels of cyclin D1 (CCND1) and hyperphosphorylation of retinoblastoma 1 (RB1). A FLCN interactome screen uncovered FLCN binding to DNA-dependent protein kinase (DNA-PK). This novel interaction was reversed in an irradiation-responsive manner. Knockdown of FLCN in HK2 cells caused a marked elevation of γH2AX and RB1 phosphorylation. Both CCND1 and RB1 phosphorylation remained raised during DNA damage, showing an association with defective cell cycle control with FLCN knockdown. Furthermore, Flcn-knockdown C. elegans were defective in cell cycle arrest by DNA damage. This work implicates that long-term FLCN loss and associated cell cycle defects in BHD patients could contribute to their increased risk of cancer.
RESUMO
The identification of a disease-causing variant in a patient diagnosed with cardiomyopathy allows for presymptomatic testing in at risk relatives. Carriers of a pathogenic variant can subsequently be screened at intervals by a cardiologist to assess the risk for potentially life-threatening arrhythmias which can be life-saving. In addition, gene-specific recommendations for risk stratification and disease specific pharmacological options for therapy are beginning to emerge. The large variability in disease penetrance, symptoms, and prognosis, and in some families even in cardiomyopathy subtype, makes genetic counseling both of great importance and complicated.
Assuntos
Cardiomiopatias , Humanos , Cardiomiopatias/genética , Aconselhamento Genético , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , MutaçãoRESUMO
AIMS: Recently, a genetic variant-specific prediction model for phospholamban (PLN) p.(Arg14del)-positive individuals was developed to predict individual major ventricular arrhythmia (VA) risk to support decision-making for primary prevention implantable cardioverter defibrillator (ICD) implantation. This model predicts major VA risk from baseline data, but iterative evaluation of major VA risk may be warranted considering that the risk factors for major VA are progressive. Our aim is to evaluate the diagnostic performance of the PLN p.(Arg14del) risk model at 3-year follow-up. METHODS AND RESULTS: We performed a landmark analysis 3 years after presentation and selected only patients with no prior major VA. Data were collected of 268 PLN p.(Arg14del)-positive subjects, aged 43.5 ± 16.3 years, 38.9% male. After the 3 years landmark, subjects had a mean follow-up of 4.0 years (± 3.5 years) and 28 (10%) subjects experienced major VA with an annual event rate of 2.6% [95% confidence interval (CI) 1.6-3.6], defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. The PLN p.(Arg14del) risk score yielded good discrimination in the 3 years landmark cohort with a C-statistic of 0.83 (95% CI 0.79-0.87) and calibration slope of 0.97. CONCLUSION: The PLN p.(Arg14del) risk model has sustained good model performance up to 3 years follow-up in PLN p.(Arg14del)-positive subjects with no history of major VA. It may therefore be used to support decision-making for primary prevention ICD implantation not merely at presentation but also up to at least 3 years of follow-up.
Assuntos
Arritmias Cardíacas , Desfibriladores Implantáveis , Feminino , Humanos , Masculino , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Proteínas de Ligação ao Cálcio/genética , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Reprodutibilidade dos Testes , Fatores de Risco , Adulto , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Vascular Ehlers-Danlos syndrome (vEDS) is a rare connective tissue disorder with a high risk for arterial, bowel, and uterine rupture, caused by heterozygous pathogenic variants in COL3A1. The aim of this cohort study is to provide further insights into the natural history of vEDS and describe genotype-phenotype correlations in a Dutch multicenter cohort to optimize patient care and increase awareness of the disease. METHODS: Individuals with vEDS throughout the Netherlands were included. The phenotype was charted by retrospective analysis of molecular and clinical data, combined with a one-time physical examination. RESULTS: A total of 142 individuals (50% female) participated the study, including 46 index patients (32%). The overall median age at genetic diagnosis was 41.0 years. More than half of the index patients (54.3%) and relatives (53.1%) had a physical appearance highly suggestive of vEDS. In these individuals, major events were not more frequent (P=0.90), but occurred at a younger age (P=0.01). A major event occurred more often and at a younger age in men compared with women (P<0.001 and P=0.004, respectively). Aortic aneurysms (P=0.003) and pneumothoraces (P=0.029) were more frequent in men. Aortic dissection was more frequent in individuals with a COL3A1 variant in the first quarter of the collagen helical domain (P=0.03). CONCLUSIONS: Male sex, type and location of the COL3A1 variant, and physical appearance highly suggestive of vEDS are risk factors for the occurrence and early age of onset of major events. This national multicenter cohort study of Dutch individuals with vEDS provides a valuable basis for improving guidelines for the diagnosing, follow-up, and treatment of individuals with vEDS.
Assuntos
Colágeno Tipo III , Síndrome de Ehlers-Danlos , Humanos , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/epidemiologia , Feminino , Masculino , Países Baixos/epidemiologia , Adulto , Colágeno Tipo III/genética , Pessoa de Meia-Idade , Estudos Retrospectivos , Estudos de Coortes , Fenótipo , Adolescente , Estudos de Associação Genética , Adulto Jovem , Idoso , Síndrome de Ehlers-Danlos Tipo IVRESUMO
Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.
RESUMO
BACKGROUND: Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS: We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS: 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30â years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6)â WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS: GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.
Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Telangiectasia Hemorrágica Hereditária , Humanos , Masculino , Feminino , Adulto , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Hipertensão Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/complicações , Hipertensão Pulmonar Primária Familiar , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Fenótipo , Fator 2 de Diferenciação de Crescimento/genética , Estudos Multicêntricos como AssuntoRESUMO
BACKGROUND: Phospholamban (PLN) p.(Arg14del) variant carriers are at risk for development of malignant ventricular arrhythmia (MVA). Accurate risk stratification allows timely implantation of intracardiac defibrillators and is currently performed with a multimodality prediction model. OBJECTIVE: This study aimed to investigate whether an explainable deep learning-based approach allows risk prediction with only electrocardiogram (ECG) data. METHODS: A total of 679 PLN p.(Arg14del) carriers without MVA at baseline were identified. A deep learning-based variational auto-encoder, trained on 1.1 million ECGs, was used to convert the 12-lead baseline ECG into its FactorECG, a compressed version of the ECG that summarizes it into 32 explainable factors. Prediction models were developed by Cox regression. RESULTS: The deep learning-based ECG-only approach was able to predict MVA with a C statistic of 0.79 (95% CI, 0.76-0.83), comparable to the current prediction model (C statistic, 0.83 [95% CI, 0.79-0.88]; P = .054) and outperforming a model based on conventional ECG parameters (low-voltage ECG and negative T waves; C statistic, 0.65 [95% CI, 0.58-0.73]; P < .001). Clinical simulations showed that a 2-step approach, with ECG-only screening followed by a full workup, resulted in 60% less additional diagnostics while outperforming the multimodal prediction model in all patients. A visualization tool was created to provide interactive visualizations (https://pln.ecgx.ai). CONCLUSION: Our deep learning-based algorithm based on ECG data only accurately predicts the occurrence of MVA in PLN p.(Arg14del) carriers, enabling more efficient stratification of patients who need additional diagnostic testing and follow-up.
Assuntos
Algoritmos , Proteínas de Ligação ao Cálcio , Aprendizado Profundo , Eletrocardiografia , Humanos , Eletrocardiografia/métodos , Masculino , Feminino , Medição de Risco/métodos , Pessoa de Meia-Idade , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatias/diagnóstico , Cardiomiopatias/fisiopatologia , Cardiomiopatias/etiologia , Adulto , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/etiologia , Estudos RetrospectivosRESUMO
BACKGROUND: Congenital heart diseases (CHD) are the most common congenital malformations in newborns and remain the leading cause of mortality among infants under one year old. Molecular diagnosis is crucial to evaluate the recurrence risk and to address future prenatal diagnosis. Here, we describe two families with various forms of inherited non-syndromic CHD and the genetic work-up and resultant findings. METHODS: Next-generation sequencing (NGS) was employed in both families to uncover the genetic cause. In addition, we performed functional analysis to investigate the consequences of the identified variants in vitro. RESULTS: NGS identified possible causative variants in both families in the protein kinase domain of the TGFBR1 gene. These variants occurred on the same amino acid, but resulted in differently substituted amino acids (p.R398C/p.R398H). Both variants co-segregate with the disease, are extremely rare or unique, and occur in an evolutionary highly conserved domain of the protein. Furthermore, both variants demonstrated a significantly altered TGFBR1-smad signaling activity. Clinical investigation revealed that none of the carriers had (signs of) aortopathy. CONCLUSION: In conclusion, we describe two families, with various forms of inherited non-syndromic CHD without aortopathies, associated with unique/rare variants in TGFBR1 that display altered TGF-beta signaling. These findings highlight involvement of TGFBR1 in CHD, and warrant consideration of potential causative TGFBR1 variants also in CHD patients without aortopathies.
RESUMO
BACKGROUND: The arrhythmogenic cardiomyopathy (ACM) phenotype, with life-threatening ventricular arrhythmias and heart failure, varies according to genetic aetiology. We aimed to characterise the phenotype associated with the variant c.1211dup (p.Val406Serfs*4) in the plakophilin2 gene (PKP2) and compare it with previously reported Dutch PKP2 founder variants. METHODS: Clinical data were collected retrospectively from medical records of 106 PKP2 c.1211dup heterozygous carriers. Using data from the Netherlands ACM Registry, c.1211dup was compared with 3 other truncating PKP2 variants (c.235Câ¯> T (p.Arg79*), c.397Câ¯> T (p.Gln133*) and c.2489+1Gâ¯> A (p.?)). RESULTS: Of the 106 carriers, 47 (44%) were diagnosed with ACM, at a mean age of 41 years. By the end of follow-up, 29 (27%) had experienced sustained ventricular arrhythmias and 12 (11%) had developed heart failure, with male carriers showing significantly higher risks than females on these endpoints (pâ¯< 0.05). Based on available cardiac magnetic resonance imaging and echocardiographic data, 46% of the carriers showed either right ventricular dilatation and/or dysfunction, whereas a substantial minority (37%) had some form of left ventricular involvement. Both geographical distribution of carriers and haplotype analysis suggested PKP2 c.1211dup to be a founder variant originating from the South-Western coast of the Netherlands. Finally, a Cox proportional hazards model suggested significant differences in ventricular arrhythmia-free survival between 4 PKP2 founder variants, including c.1211dup. CONCLUSIONS: The PKP2 c.1211dup variant is a Dutch founder variant associated with a typical right-dominant ACM phenotype, but also left ventricular involvement, and a possibly more severe phenotype than other Dutch PKP2 founder variants.
RESUMO
BACKGROUND: Endurance and frequent exercise are associated with earlier onset of arrhythmogenic right ventricular cardiomyopathy (ARVC) and ventricular arrhythmias (VA) in desmosomal gene variant carriers. Individuals with the pathogenic c.40_42del; p.(Arg14del) variant in the PLN gene are frequently diagnosed with ARVC or dilated cardiomyopathy (DCM). The aim of this study was to evaluate the effect of exercise in PLN p.(Arg14del) carriers. METHODS: In total, 207 adult PLN p.(Arg14del) carriers (39.1% male; mean age 53⯱ 15 years) were interviewed on their regular physical activity since the age of 10 years. The association of exercise with diagnosis of ARVC, DCM, sustained VA and hospitalisation for heart failure (HF) was studied. RESULTS: Individuals participated in regular physical activities with a median of 1661 metabolic equivalent of task (MET) hours per year (31.9 MET-hours per week) until clinical presentation. The 50% most and least active individuals had a similar frequency of sustained VA (18.3% vs 18.4%; pâ¯= 0.974) and hospitalisation for HF (9.6% vs 8.7%; pâ¯= 0.827). There was no relationship between exercise and survival free from (incident) sustained VA (pâ¯= 0.65), hospitalisation for HF (pâ¯= 0.81), diagnosis of ARVC (pâ¯= 0.67) or DCM (pâ¯= 0.39) during follow-up. In multivariate analyses, exercise was not associated with sustained VA or HF hospitalisation during follow-up in this relatively not-active cohort. CONCLUSION: There was no association between the amount of exercise and the susceptibility to develop ARVC, DCM, VA or HF in PLN p.(Arg14del) carriers. This suggested unaffected PLN p.(Arg14del) carriers can safely perform mild-moderate exercise, in contrast to desmosomal variant carriers and ARVC patients.
RESUMO
PURPOSE: Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS: An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS: Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION: We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Adulto , Criança , Humanos , Hipertensão Arterial Pulmonar/genética , Mutação , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Predisposição Genética para Doença , Testes Genéticos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Membrana Transportadoras/genética , Receptores de Activinas Tipo II/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Morfogenéticas Ósseas/genéticaRESUMO
INTRODUCTION: The MYH7 c.5135Gâ¯> A p.(Arg1712Gln) variant has been identified in several patients worldwide and is classified as pathogenic in the ClinVar database. We aimed to delineate its associated phenotype and evaluate a potential founder effect. METHODS: We retrospectively collected clinical and genetic data of 22 probands and 74 family members from an international cohort. RESULTS: In total, 53 individuals carried the MYH7 p.(Arg1712Gln) variant, of whom 38 (72%) were diagnosed with hypertrophic cardiomyopathy (HCM). Mean age at HCM diagnosis was 48.8 years (standard deviation: 18.1; range: 8-74). The clinical presentation ranged from asymptomatic HCM to arrhythmias (atrial fibrillation and malignant ventricular arrhythmias). Aborted sudden cardiac death (SCD) leading to the diagnosis of HCM occurred in one proband at the age of 68 years, and a family history of SCD was reported by 39% (5/13) probands. Neither heart failure deaths nor heart transplants were reported. Women had a generally later-onset disease, with 14% of female carriers diagnosed with HCM at age 50 years compared with 54% of male carriers. In both sexes, the disease was fully penetrant by age 75 years. Haplotypes were reconstructed for 35 patients and showed a founder effect in a subset of patients. CONCLUSION: MYH7 p.(Arg1712Gln) is a pathogenic founder variant with a consistent HCM phenotype that may present with delayed penetrance. This suggested that clinical follow-up should be pursued after the seventh decade in healthy carriers and that longer intervals between screening may be justified in healthy women <â¯30 years.
RESUMO
BACKGROUND: Several hereditary disorders, with highly variable and sometimes difficult to recognize manifestations, can present with a spontaneous pneumothorax. Options to perform DNA-testing have changed rapidly, as a result of which physicians of diverse disciplines are coming into contact with hereditary disorders. CASE DESCRIPTION: Two patients with a history of multiple spontaneous pneumothoraxes were seen at the outpatient clinic of the department of Clinical Genetics. Based on family history and physical examination, a suspicion of an underlying hereditary disorder arose. Birt-Hogg-Dubé syndrome and vascular Ehlers-Danlos syndrome were diagnosed through DNA-testing. Based on this, additional screening advices were given and DNA-testing became possible in the family. CONCLUSION: A spontaneous pneumothorax may be a manifestation of an underlying hereditary disorder. With attention to clinical symptoms and family history, physicians can contribute to timely diagnosis. In many cases this results in significant health benefits for both the patient and affected family members, such as screening for kidney cancer in the case of Birt-Hogg-Dubé syndrome.
Assuntos
Síndrome de Birt-Hogg-Dubé , Neoplasias Renais , Pneumotórax , Humanos , Pneumotórax/etiologia , Pneumotórax/genética , Síndrome de Birt-Hogg-Dubé/complicações , Síndrome de Birt-Hogg-Dubé/diagnóstico , Síndrome de Birt-Hogg-Dubé/genética , AnamneseRESUMO
BACKGROUND: Clinical guidelines recommend regular screening for arrhythmogenic right ventricular cardiomyopathy (ARVC) to monitor at-risk relatives, resulting in a significant burden on clinical resources. Prioritizing relatives on their probability of developing definite ARVC may provide more efficient patient care. OBJECTIVES: The aim of this study was to determine the predictors and probability of ARVC development over time among at-risk relatives. METHODS: A total of 136 relatives (46% men, median age 25.5 years [IQR: 15.8-44.4 years]) from the Netherlands Arrhythmogenic Cardiomyopathy Registry without definite ARVC by 2010 task force criteria were included. Phenotype was ascertained using electrocardiography, Holter monitoring, and cardiac imaging. Subjects were divided into groups with "possible ARVC" (only genetic or familial predisposition) and "borderline ARVC" (1 minor task force criterion plus genetic or familial predisposition). Cox regression was performed to determine predictors and multistate modeling to assess the probability of ARVC development. Results were replicated in an unrelated Italian cohort (57% men, median age 37.0 years [IQR: 25.4-50.4 years]). RESULTS: At baseline, 93 subjects (68%) had possible ARVC, and 43 (32%) had borderline ARVC. Follow-up was available for 123 relatives (90%). After 8.1 years (IQR: 4.2-11.4 years), 41 (33%) had developed definite ARVC. Independent of baseline phenotype, symptomatic subjects (P = 0.014) and those 20 to 30 years of age (P = 0.002) had a higher hazard of developing definite ARVC. Furthermore, patients with borderline ARVC had a higher probability of developing definite ARVC compared with those with possible ARVC (1-year probability 13% vs 0.6%, 3-year probability 35% vs 5%; P < 0.01). External replication showed comparable results (P > 0.05). CONCLUSIONS: Symptomatic relatives, those 20 to 30 years of age, and those with borderline ARVC have a higher probability of developing definite ARVC. These patients may benefit from more frequent follow-up, while others may be monitored less often.
Assuntos
Displasia Arritmogênica Ventricular Direita , Humanos , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/epidemiologia , Displasia Arritmogênica Ventricular Direita/genética , Eletrocardiografia/métodos , Fenótipo , Países BaixosRESUMO
BACKGROUND: Birt-Hogg-Dubé (BHD) syndrome is a rare genetic syndrome caused by pathogenic or likely pathogenic germline variants in the FLCN gene. Patients with BHD syndrome have an increased risk of fibrofolliculomas, pulmonary cysts, pneumothorax and renal cell carcinoma. There is debate regarding whether colonic polyps should be added to the criteria. Previous risk estimates have mostly been based on small clinical case series. METHODS: A comprehensive review was conducted to identify studies that had recruited families carrying pathogenic or likely pathogenic variants in FLCN. Pedigree data were requested from these studies and pooled. Segregation analysis was used to estimate the cumulative risk of each manifestation for carriers of FLCN pathogenic variants. RESULTS: Our final dataset contained 204 families that were informative for at least one manifestation of BHD (67 families informative for skin manifestations, 63 for lung, 88 for renal carcinoma and 29 for polyps). By age 70 years, male carriers of the FLCN variant have an estimated 19% (95% CI 12% to 31%) risk of renal tumours, 87% (95% CI 80% to 92%) of lung involvement and 87% (95% CI 78% to 93%) of skin lesions, while female carriers had an estimated 21% (95% CI 13% to 32%) risk of renal tumours, 82% (95% CI 73% to 88%) of lung involvement and 78% (95% CI 67% to 85%) of skin lesions. The cumulative risk of colonic polyps by age 70 years old was 21% (95% CI 8% to 45%) for male carriers and 32% (95% CI 16% to 53%) for female carriers. CONCLUSIONS: These updated penetrance estimates, based on a large number of families, are important for the genetic counselling and clinical management of BHD syndrome.
Assuntos
Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renais , Pólipos do Colo , Neoplasias Renais , Humanos , Masculino , Feminino , Idoso , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patologia , Penetrância , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Neoplasias Renais/epidemiologia , Neoplasias Renais/genética , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/genéticaRESUMO
Previously, we reported a series of families presenting with trichodiscomas, inherited in an autosomal dominant pattern. The phenotype was named familial multiple discoid fibromas (FMDF). The genetic cause of FMDF remained unknown so far. Trichodiscomas are skin lesions previously reported to be part of the same spectrum as the fibrofolliculoma observed in Birt-Hogg-Dubé syndrome (BHD), an inherited disease caused by pathogenic variants in the FLCN gene. Given the clinical and histological differences with BHD and the exclusion of linkage with the FLCN locus, the phenotype was concluded to be distinct from BHD. We performed extensive clinical evaluations and genetic testing in ten families with FMDF. We identified a FNIP1 frameshift variant in nine families and genealogical studies showed common ancestry for eight families. Using whole exome sequencing, we identified six additional rare variants in the haplotype surrounding FNIP1, including a missense variant in the PDGFRB gene that was found to be present in all tested patients with FMDF. Genome-wide linkage analysis showed that the locus on chromosome 5 including FNIP1 was the only region reaching the maximal possible LOD score. We concluded that FMDF is linked to a haplotype on chromosome 5. Additional evaluations in families with FMDF are required to unravel the exact genetic cause underlying the phenotype. When evaluating patients with multiple trichodisomas without a pathogenic variant in the FLCN gene, further genetic testing is warranted and can include analysis of the haplotype on chromosome 5.