Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
AoB Plants ; 15(2): plad009, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36994381

RESUMO

Newly introduced trait diversity can spur rapid evolution and facilitate local adaptation in the introduced plant Lythrum salicaria. The horticultural plant L. virgatum might further introduce meaningful trait variation by escaping into established L. salicaria populations or by hybridizing with L. salicaria. Although many experiments have focused on L. salicaria genotypes, relatively little is known about L. virgatum ecology. We used a greenhouse common garden to compare traits and flood response of L. salicaria and L. virgatum collected from two sources each in their native range. We tested the hypotheses that these two wetland taxa have comparable responses to flooding (inundation), and that flood tolerance correlated to higher fitness. Flooding produced stronger stress responses in L. virgatum. Compared to L. salicaria, L. virgatum shifted more aboveground allocation away from reproduction, decreased inflorescence biomass by 40% more, and produced 7% more stem aerenchymatous phellum, a specialized tissue that maintains aeration. Despite these more pronounced responses to flooding stress, L. virgatum had higher fitness (inflorescence biomass and reproductive allocation) than L. salicaria. Overall, L. virgatum differed from L. salicaria in functionally important ways. Lythrum virgatum persisted under flooding and produced more reproductive biomass than L. salicaria under both flooded and non-flooded conditions. However, inundation stressed L. virgatum more than L. salicaria. Lythrum virgatum is likely able to establish into the wetland habitats in which L. salicaria prevails but may possess broader habitat tolerances.

2.
Ann Bot ; 131(1): 45-58, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34175922

RESUMO

BACKGROUND AND AIMS: Polyploids are often hypothesized to have increased phenotypic plasticity compared with their diploid progenitors, but recent work suggests that the relationship between whole-genome duplication (WGD) and plasticity is not so straightforward. Impacts of WGD on plasticity are moderated by other evolutionary processes in nature, which has impeded generalizations regarding the effects of WGD alone. We assessed shifts in phenotypic plasticity and mean trait values accompanying WGD, as well as the adaptive consequences of these shifts. METHODS: To isolate WGD effects, we compared two diploid lineages of Arabidopsis thaliana wiht corresponding autotetraploids grown across different salt and nutrient conditions in a growth chamber. KEY RESULTS: For the few cases in which diploids and polyploids differed in plasticity, polyploids were more plastic, consistent with hypotheses that WGD increases plasticity. Under stress, increased plasticity was often adaptive (associated with higher total seed mass), but in other cases plasticity was unrelated to fitness. Mean trait values and plasticity were equally likely to be affected by WGD, but the adaptive consequences of these shifts were often context dependent or lineage specific. For example, polyploids had extended life spans, a shift that was adaptive in one polyploid lineage under amenable conditions but was maladaptive in the other lineage under stress. CONCLUSIONS: Our work shows that increased phenotypic plasticity can result from WGD alone, independent of other evolutionary processes. We find that the effects of WGD can differ depending on the genotype of the progenitor and the environmental context. Though our experiment was limited to two genotypes of a single species, these findings support the idea that WGD can indeed increase plasticity.


Assuntos
Arabidopsis , Diploide , Arabidopsis/genética , Evolução Biológica , Poliploidia , Genótipo , Genoma de Planta
3.
Ecol Evol ; 12(12): e9590, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514541

RESUMO

Agricultural weeds may originate from wild populations, but the origination patterns and genetics underlying this transition remain largely unknown. Analysis of weedy-wild paired populations from independent locations may provide evidence to identify key genetic variation contributing to this adaptive shift. We performed genetic variation and expression analyses on transcriptome data from 67 giant ragweed samples collected from different locations in Ohio, Iowa, and Minnesota and found geographically separated weedy populations likely originated independently from their adjacent wild populations, but subsequent spreading of weedy populations also occurred locally. By using eight closely related weedy-wild paired populations, we identified thousands of unique transcripts in weedy populations that reflect shared or specific functions corresponding, respectively, to both convergently evolved and population-specific weediness processes. In addition, differential expression of specific groups of genes was detected between weedy and wild giant ragweed populations using gene expression diversity and gene co-expression network analyses. Our study suggests an integrated route of weedy giant ragweed origination, consisting of independent origination combined with the subsequent spreading of certain weedy populations, and provides several lines of evidence to support the hypothesis that gene expression variability plays a key role in the evolution of weedy species.

4.
Ecol Evol ; 11(16): 11457-11476, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429933

RESUMO

Urban stressors represent strong selective gradients that can elicit evolutionary change, especially in non-native species that may harbor substantial within-population variability. To test whether urban stressors drive phenotypic differentiation and influence local adaptation, we compared stress responses of populations of a ubiquitous invader, reed canary grass (Phalaris arundinacea). Specifically, we quantified responses to salt, copper, and zinc additions by reed canary grass collected from four populations spanning an urbanization gradient (natural, rural, moderate urban, and intense urban). We measured ten phenotypic traits and trait plasticities, because reed canary grass is known to be highly plastic and because plasticity may enhance invasion success. We tested the following hypotheses: (a) Source populations vary systematically in their stress response, with the intense urban population least sensitive and the natural population most sensitive, and (b) plastic responses are adaptive under stressful conditions. We found clear trait variation among populations, with the greatest divergence in traits and trait plasticities between the natural and intense urban populations. The intense urban population showed stress tolerator characteristics for resource acquisition traits including leaf dry matter content and specific root length. Trait plasticity varied among populations for over half the traits measured, highlighting that plasticity differences were as common as trait differences. Plasticity in root mass ratio and specific root length were adaptive in some contexts, suggesting that natural selection by anthropogenic stressors may have contributed to root trait differences. Reed canary grass populations in highly urbanized wetlands may therefore be evolving enhanced tolerance to urban stressors, suggesting a mechanism by which invasive species may proliferate across urban wetland systems generally.

5.
Sci Rep ; 10(1): 21632, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303799

RESUMO

Interspecific competition reduces resource availability and can affect evolution. We quantified multivariate selection in the presence and absence of strong interspecific competition using a greenhouse experiment with 35 natural accessions of Arabidopsis thaliana. We assessed selection on nine traits representing plant phenology, growth, and architecture, as well as their plasticities. Competition reduced biomass and fitness by over 98%, and plastic responses to competition varied by genotype (significant G × E) for all traits except specific leaf area (SLA). Competitive treatments altered selection on flowering phenology and plant architecture, with significant selection on all phenology traits and most architecture traits under competition-present conditions but little indication that selection occurred in the absence of competitors. Plasticity affected fitness only in competition-present conditions, where plasticity in flowering time and early internode lengths was adaptive. The competitive environment caused changes in the trait correlation structure and surprisingly reduced phenotypic integration, which helped explain some of the observed selection patterns. Despite this overall shift in the trait correlation matrix, genotypes with delayed flowering had lower SLA (thicker, tougher leaves) regardless of the competitive environment, a pattern we have not seen previously reported in the literature. Overall, our study highlights multiple ways in which interspecific competition can alter selective regimes, contributing to our understanding of variability in selection processes over space and time.


Assuntos
Arabidopsis/genética , Seleção Genética , Arabidopsis/fisiologia , Fertilidade , Folhas de Planta/fisiologia
6.
Oecologia ; 191(2): 447-460, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31468198

RESUMO

Human activities often lead natural systems to be nutrient enriched, with anthropogenically derived nutrients commonly delivered in discrete pulses. Both nutrient enrichment and nutrient pulses can impact plant performance and phenotypic plasticity, especially in invasive species, but quantifying their independent effects remains challenging. To explore the effects of nutrient enrichment and nutrient pulse magnitude, we established a common garden experiment using the North American wetland invader Phragmites australis and its native conspecific Phragmites australis subsp. americanus (five source populations each). We exposed plants to three levels of nutrient enrichment that were delivered either in small or large-magnitude pulses, examining productivity and plasticity responses over a single growing season. Productivity and biomass allocation differed by lineage, with invasive Phragmites producing 73% more biomass and 66% more culms, but with the native growing 31% taller and allocating more of its biomass belowground. Contrary to expectations, both lineages responded similarly to nutrient enrichment and were similarly plastic in their traits. Nutrient enrichment, rather than nutrient pulses, led to large productivity gains and trait plasticity magnitudes. However, total biomass and leaf-level traits (specific leaf area and chlorophyll concentration) were responsive to variation in nutrient pulse magnitudes. By decoupling the effects of nutrient enrichment from nutrient pulses, our study demonstrates the independent effects of these two key factors for plant performance and, by extension, invasion success. We report trait-based similarities between two lineages of Phragmites that play contrasting ecological roles in North American wetlands, and we highlight the potentially detrimental effects of nutrient pulses.


Assuntos
Nutrientes , Áreas Alagadas , Biomassa , Espécies Introduzidas , Poaceae
7.
Sci Rep ; 9(1): 6746, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043692

RESUMO

Hybridization is a common phenomenon, yet its evolutionary outcomes remain debated. Here, we ask whether hybridization can speed adaptive evolution using resynthesized hybrids between two species of Texas sunflowers (Helianthus annuus and H. debilis) that form a natural hybrid in the wild (H. annuus ssp. texanus). We established separate control and hybrid populations and allowed them to evolve naturally in a field evolutionary experiment. In a final common-garden, we measured fitness and a suite of key traits for these lineages. We show that hybrid fitness evolved in just seven generations, with fitness of the hybrid lines exceeding that of the controls by 14% and 51% by the end of the experiment, though only the latter represents a significant increase. More traits evolved significantly in hybrids relative to controls, and hybrid evolution was faster for most traits. Some traits in both hybrid and control lineages evolved in an adaptive manner consistent with the direction of phenotypic selection. These findings show a causal pathway from hybridization to rapid adaptation and suggest an explanation for the frequently noted association between hybridization and adaptive radiation, range expansion, and invasion.


Assuntos
Evolução Biológica , Hibridização Genética , Plantas/genética , Seleção Genética , Aptidão Genética , Fenótipo , Característica Quantitativa Herdável
8.
Evol Appl ; 11(6): 995-1009, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928305

RESUMO

Spatial patterns of trait variation across a species' range have implications for population success and evolutionary change potential, particularly in range-expanding and weedy species that encounter distinct selective pressures at large and small spatial scales simultaneously. We investigated intraspecific trait variation in a common garden experiment with giant ragweed (Ambrosia trifida), a highly variable agricultural weed with an expanding geographic range and broad ecological amplitude. Our study included paired populations from agricultural and natural riparian habitats in each of seven regions ranging east to west from the core of the species' distribution in central Ohio to southeastern Minnesota, which is nearer the current invasion front. We observed trait variation across both large- and small-scale putative selective gradients. At large scales, giant ragweed populations from the westernmost locations were nearly four times more fecund and had a nearly 50% increase in reproductive allocation compared to populations from the core. The degree of surface texture on fruits also declined from east to west. Greater fecundity in the west represents a putative trade-off between fruit size and fruit number across the study region, although no such trade-off was found across individual plants. This pattern may effectively result in greater propagule pressure closer to the invasion front. At smaller spatial scales, plants from agricultural populations emerged later and were smaller than plants from riparian populations. However, because plants from agricultural populations allocated more biomass to reproduction, total fecundity did not differ across habitats. Our emergence data are consistent with previous observations showing delayed emergence in agricultural compared to natural populations; thus evolutionary change may be predictable as giant ragweed continues spreading into agricultural fields throughout North America. These shifts in life-history strategy apparently bear no fecundity cost, suggesting that giant ragweed's success can be attributed at least in part to its substantial adaptive potential.

9.
Ann Bot ; 121(7): 1309-1318, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29534147

RESUMO

Background and Aims: Genome size is hypothesized to affect invasiveness in plants. Key evidence comes from a previous study of invasive eastern North American populations of the grass Phalaris arundinacea: invasive genotypes with smaller genomes had higher growth rates, and genome sizes were smaller in the invasive vs. native range. This study aimed to re-investigate those patterns by examining a broader range of North American populations and by employing the modern best-practice protocol for plant genome size estimation in addition to the previously used protocol. Methods: Genome sizes were measured using both internal and pseudo-internal standardization protocols for 20 invasive and nine native range accessions of P. arundinacea. After a round of vegetative propagation to reduce maternal environmental effects, growth (stem elongation) rates of these accessions were measured in the greenhouse. Key Results: Using the best-practice protocol, there was no evidence of a correlation between genome size and growth rates (P = 0.704), and no evidence for differences in genome sizes of invasive and native range accessions (P > 0.353). However, using the older genome size estimation protocol, both relationships were significant (reproducing the results of the previous study). Conclusions: Genome size reduction has not driven increased invasiveness in a broad sample of North American P. arundinacea. Further, inappropriate genome size estimation techniques can create spurious correlations between genome size and plant traits such as growth rate. Valid estimation is vital to progress in understanding the potentially widespread effects of genome size on biological processes and patterns.


Assuntos
Genoma de Planta/genética , Espécies Introduzidas , Phalaris/genética , DNA de Plantas/genética , Estudos de Associação Genética , Phalaris/crescimento & desenvolvimento
10.
New Phytol ; 215(1): 469-478, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382619

RESUMO

Because establishing a new population often depends critically on finding mates, individuals capable of uniparental reproduction may have a colonization advantage. Accordingly, there should be an over-representation of colonizing species in which individuals can reproduce without a mate, particularly in isolated locales such as oceanic islands. Despite the intuitive appeal of this colonization filter hypothesis (known as Baker's law), more than six decades of analyses have yielded mixed findings. We assembled a dataset of island and mainland plant breeding systems, focusing on the presence or absence of self-incompatibility. Because this trait enforces outcrossing and is unlikely to re-evolve on short timescales if it is lost, breeding system is especially likely to reflect the colonization filter. We found significantly more self-compatible species on islands than mainlands across a sample of > 1500 species from three widely distributed flowering plant families (Asteraceae, Brassicaceae and Solanaceae). Overall, 66% of island species were self-compatible, compared with 41% of mainland species. Our results demonstrate that the presence or absence of self-incompatibility has strong explanatory power for plant geographical patterns. Island floras around the world thus reflect the role of a key reproductive trait in filtering potential colonizing species in these three plant families.


Assuntos
Asteraceae/fisiologia , Brassicaceae/fisiologia , Reprodução Assexuada , Solanaceae/fisiologia , Ilhas
11.
Ecol Appl ; 25(1): 125-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26255362

RESUMO

The degree to which biocontrol agents impact invasive plants varies widely across landscapes, often for unknown reasons. Understanding this variability can help optimize invasive species management while also informing our understanding of trophic linkages. To address these issues, we tested three hypotheses with contrasting predictions regarding the likelihood of biocontrol success. (1) The biocontrol effort hypothesis: invasive populations are regulated primarily by top-down effects, predicting that increased biocontrol efforts alone (e.g., more individuals of a given biocontrol agent or more time since agent release) will enhance biocontrol success. (2) The relative fertility hypothesis: invasive populations are regulated primarily by bottom-up effects, predicting that nutrient enrichment will increase dominance by invasives and thus reduce biocontrol success, regardless of biocontrol efforts. (3) The fertility-dependent biocontrol effort hypothesis: top-down effects will only regulate invasive populations if bottom-up effects are weak. It predicts that greater biocontrol efforts will increase biocontrol success, but only in low-nutrient sites. To test these hypotheses, we surveyed 46 sites across three states with prior releases of Galerucella beetles, the most common biocontrol agents used against invasive purple loosestrife (Lythrum salicaria). We found strong support for the fertility-dependent biocontrol effort hypothesis, as biocontrol success occurred most often with greater biocontrol efforts, but only in low-fertility sites. This result held for early stage metrics of biocontrol success (higher Galerucella abundance) and ultimate biocontrol outcomes (decreased loosestrife plant size and abundance). Presence of the invasive grass Phalaris arundinacea was also inversely related to loosestrife abundance, suggesting that biocontrol-based reductions in loosestrife made secondary invasion by P. arundinacea more likely. Our data suggest that low-nutrient sites be prioritized for loosestrife biocontrol and that future monitoring account for variation in site fertility or work to mitigate it. We introduce a new framework that integrates our findings with conflicting patterns previously reported from other biocontrol systems, proposing a unimodal relationship whereby nutrient availability enhances biocontrol success in low-nutrient sites but hampers it in high-nutrient sites. Our results represent one of the first examples of biocontrol success depending on site fertility, which has the potential to inform biocontrol-based management decisions across entire regions and among contrasting systems.


Assuntos
Besouros/fisiologia , Espécies Introduzidas , Controle Biológico de Vetores/métodos , Plantas/classificação , Animais , Herbivoria , Dinâmica Populacional
12.
New Phytol ; 208(3): 656-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26192018

RESUMO

Baker's law refers to the tendency for species that establish on islands by long-distance dispersal to show an increased capacity for self-fertilization because of the advantage of self-compatibility when colonizing new habitat. Despite its intuitive appeal and broad empirical support, it has received substantial criticism over the years since it was proclaimed in the 1950s, not least because it seemed to be contradicted by the high frequency of dioecy on islands. Recent theoretical work has again questioned the generality and scope of Baker's law. Here, we attempt to discern where the idea is useful to apply and where it is not. We conclude that several of the perceived problems with Baker's law fall away when a narrower perspective is adopted on how it should be circumscribed. We emphasize that Baker's law should be read in terms of an enrichment of a capacity for uniparental reproduction in colonizing situations, rather than of high selfing rates. We suggest that Baker's law might be tested in four different contexts, which set the breadth of its scope: the colonization of oceanic islands, metapopulation dynamics with recurrent colonization, range expansions with recurrent colonization, and colonization through species invasions.


Assuntos
Ilhas , Dispersão Vegetal , Autofertilização , Animais , Evolução Biológica , Polinização
13.
Mol Ecol ; 24(9): 2194-211, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25522096

RESUMO

The wild North American sunflowers Helianthus annuus and H. debilis are participants in one of the earliest identified examples of adaptive trait introgression, and the exchange is hypothesized to have triggered a range expansion in H. annuus. However, the genetic basis of the adaptive exchange has not been examined. Here, we combine quantitative trait locus (QTL) mapping with field measurements of fitness to identify candidate H. debilis QTL alleles likely to have introgressed into H. annuus to form the natural hybrid lineage H. a. texanus. Two 500-individual BC1 mapping populations were grown in central Texas, genotyped for 384 single nucleotide polymorphism (SNP) markers and then phenotyped in the field for two fitness and 22 herbivore resistance, ecophysiological, phenological and architectural traits. We identified a total of 110 QTL, including at least one QTL for 22 of the 24 traits. Over 75% of traits exhibited at least one H. debilis QTL allele that would shift the trait in the direction of the wild hybrid H. a. texanus. We identified three chromosomal regions where H. debilis alleles increased both female and male components of fitness; these regions are expected to be strongly favoured in the wild. QTL for a number of other ecophysiological, phenological and architectural traits colocalized with these three regions and are candidates for the actual traits driving adaptive shifts. G × E interactions played a modest role, with 17% of the QTL showing potentially divergent phenotypic effects between the two field sites. The candidate adaptive chromosomal regions identified here serve as explicit hypotheses for how the genetic architecture of the hybrid lineage came into existence.


Assuntos
Aptidão Genética , Helianthus/genética , Hibridização Genética , Locos de Características Quantitativas , Adaptação Biológica/genética , Alelos , Mapeamento Cromossômico , Interação Gene-Ambiente , Ligação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Texas
14.
Ecol Lett ; 17(11): 1464-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25234578

RESUMO

The hypothesis that interspecific hybridisation promotes invasiveness has received much recent attention, but tests of the hypothesis can suffer from important limitations. Here, we provide the first systematic review of studies experimentally testing the hybridisation-invasion (H-I) hypothesis in plants, animals and fungi. We identified 72 hybrid systems for which hybridisation has been putatively associated with invasiveness, weediness or range expansion. Within this group, 15 systems (comprising 34 studies) experimentally tested performance of hybrids vs. their parental species and met our other criteria. Both phylogenetic and non-phylogenetic meta-analyses demonstrated that wild hybrids were significantly more fecund and larger than their parental taxa, but did not differ in survival. Resynthesised hybrids (which typically represent earlier generations than do wild hybrids) did not consistently differ from parental species in fecundity, survival or size. Using meta-regression, we found that fecundity increased (but survival decreased) with generation in resynthesised hybrids, suggesting that natural selection can play an important role in shaping hybrid performance - and thus invasiveness - over time. We conclude that the available evidence supports the H-I hypothesis, with the caveat that our results are clearly driven by tests in plants, which are more numerous than tests in animals and fungi.


Assuntos
Fertilidade , Hibridização Genética , Espécies Introduzidas , Animais , Fungos , Filogenia , Plantas , Seleção Genética
15.
Ecol Lett ; 15(6): 627-36, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22487445

RESUMO

Meta-analysis is increasingly used in ecology and evolutionary biology. Yet, in these fields this technique has an important limitation: phylogenetic non-independence exists among taxa, violating the statistical assumptions underlying traditional meta-analytic models. Recently, meta-analytical techniques incorporating phylogenetic information have been developed to address this issue. However, no syntheses have evaluated how often including phylogenetic information changes meta-analytic results. To address this gap, we built phylogenies for and re-analysed 30 published meta-analyses, comparing results for traditional vs. phylogenetic approaches and assessing which characteristics of phylogenies best explained changes in meta-analytic results and relative model fit. Accounting for phylogeny significantly changed estimates of the overall pooled effect size in 47% of datasets for fixed-effects analyses and 7% of datasets for random-effects analyses. Accounting for phylogeny also changed whether those effect sizes were significantly different from zero in 23 and 40% of our datasets (for fixed- and random-effects models, respectively). Across datasets, decreases in pooled effect size magnitudes after incorporating phylogenetic information were associated with larger phylogenies and those with stronger phylogenetic signal. We conclude that incorporating phylogenetic information in ecological meta-analyses is important, and we provide practical recommendations for doing so.


Assuntos
Metanálise como Assunto , Filogenia , Animais
16.
Am Nat ; 179(2): 192-203, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22218309

RESUMO

Hybridization is hypothesized to promote invasiveness, but empirical tests comparing the performance of hybrid taxa versus parental taxa in novel regions are lacking. We experimentally compared colonization ability of populations of wild radish (Raphanus raphanistrum) with populations of advanced-generation hybrids between wild radish and cultivated radish (Raphanus sativus) in a southeast Texas pasture, well beyond the known invasive range of hybrid radish. We also manipulated the strength of interspecific competition to better generalize across variable environments. In both competitive environments, hybrid populations produced at least three times more seeds than did wild radish populations, a distinction that was driven by greater hybrid seedling emergence, earlier hybrid emergence, and more hybrid seedlings surviving to flower, rather than by greater individual fecundity. Flowering duration in hybrids was less negatively affected by competition than it was in wild radish, while early emergence was associated with subsequent high seed output in both biotypes. Our data show that hybridization can enhance colonization success in a novel region and, by comparison with previous studies, that the life-history traits enhancing hybrid success can differ across regions, even for lineages originating from the same hybridization event. These results imply a much larger arena for hybrid success than previously appreciated.


Assuntos
Quimera/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Hibridização Genética , Raphanus/crescimento & desenvolvimento , Quimera/genética , Quimera/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Michigan , Dinâmica Populacional , Distribuição Aleatória , Raphanus/genética , Raphanus/fisiologia , Reprodução , Especificidade da Espécie , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA