Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 38(2): e14162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37551767

RESUMO

Trade in pangolins is illegal, and yet tons of their scales and products are seized at various ports. These large seizures are challenging to process and comprehensively genotype for upstream provenance tracing and species identification for prosecution. We implemented a scalable DNA barcoding pipeline in which rapid DNA extraction and MinION sequencing were used to genotype a substantial proportion of pangolin scales subsampled from 2 record shipments seized in Singapore in 2019 (37.5 t). We used reference sequences to match the scales to phylogeographical regions of origin. In total, we identified 2346 cytochrome b (cytb) barcodes of white-bellied (Phataginus tricuspis) (from 1091 scales), black-bellied (Phataginus tetradactyla) (227 scales), and giant (Smutsia gigantea) (1028 scales) pangolins. Haplotype diversity was higher for P. tricuspis scales (121 haplotypes, 66 novel) than that for P. tetradactyla (22 haplotypes, 15 novel) and S. gigantea (25 haplotypes, 21 novel) scales. Of the novel haplotypes, 74.2% were likely from western and west-central Africa, suggesting potential resurgence of poaching and newly exploited populations in these regions. Our results illustrate the utility of extensively subsampling large seizures and outline an efficient molecular approach for rapid genetic screening that should be accessible to most forensic laboratories and enforcement agencies.


Revelación de la magnitud de la caza furtiva del pangolín africano mediante el genotipo extenso de nanoporos de ADN de escamas incautadas Resumen Aunque el mercado de pangolines es ilegal, se incautan toneladas de sus escamas y productos derivados en varios puertos comerciales. Es un reto procesar estas magnas incautaciones y obtener el genotipo completo para usarlo en la trazabilidad logística ascendente e identificación de la especie y así imponer sanciones. Implementamos una canalización escalable del código de barras de ADN en el cual usamos la extracción rápida de ADN y la secuenciación MinION para obtener el genotipo de una proporción sustancial de las escamas de pangolín submuestreadas en dos cargamentos incautados en 2019 en Singapur (37.5 t). Usamos secuencias referenciales para emparejar las escamas con las regiones filogeográficas de origen. Identificamos en total 2,346 códigos de citocromo b (cytb) del pangolín de vientre blanco (Phataginus tricuspis) (de 1,091 escamas), de vientre negro (P. tetradactyla) (227 escamas) y del pangolín gigante (Smutsia gigantea) (1,028 escamas). La diversidad de haplotipos fue mayor en las escamas de P. tricuspis (121 haplotipos, 66 nuevos) que en las de P. tetradactyla (22 haplotipos, 15 nuevos) y S. gigantea (25 haplotipos, 21 nuevos). De los haplotipos nuevos, el 74.2% probablemente provenía del occidente y centro­occidente de África, lo que sugiere un resurgimiento potencial de la caza furtiva y poblaciones recién explotadas en estas regiones. Nuestros resultados demuestran la utilidad de submuestrear extensivamente las grandes incautaciones y esboza una estrategia molecular eficiente para un análisis genético rápido que debería ser accesible para la mayoría de los laboratorios forenses y las autoridades de aplicación.


Assuntos
Nanoporos , Pangolins , Humanos , Animais , Genótipo , Conservação dos Recursos Naturais/métodos , DNA , Convulsões
2.
Sci Rep ; 10(1): 21232, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311583

RESUMO

Many birds wintering in the Indian subcontinent fly across the Himalayas during migration, including Bar-headed Geese (Anser indicus), Demoiselle Cranes (Anthropoides virgo) and Ruddy Shelducks (Tadorna ferruginea). However, little is known about whether shorebirds migrate across the Himalayas from wintering grounds beyond the Indian subcontinent. Using geolocators and satellite tracking devices, we demonstrate for the first time that Common Redshanks (Tringa totanus) and Whimbrels (Numenius phaeopus) wintering in Singapore can directly fly over the Himalayas to reach breeding grounds in the Qinghai-Tibet Plateau and north-central Russia respectively. The results also show that migratory shorebirds wintering in Southeast Asia can use both the Central Asian Flyway and the East Asian-Australasian Flyway. For Redshanks, westerly-breeding birds crossed the Himalayas while more easterly breeders on the Plateau migrated east of the Himalayas. For Whimbrels, an individual that crossed the Himalayas was probably from a breeding population that was different from the others that migrated along the coast up the East Asian-Australasian Flyway. The minimum required altitude of routes of trans-Himalayan Redshanks were no higher on average than those of eastern migrants, but geolocator temperature data indicate that birds departing Singapore flew at high elevations even when not required to by topography, suggesting that the Himalayan mountain range may be less of a barrier than assumed.


Assuntos
Altitude , Migração Animal/fisiologia , Charadriiformes/fisiologia , Animais , Sudeste Asiático , Aves , Cruzamento , Patos , Gansos , Federação Russa , Singapura , Tibet
3.
Vector Borne Zoonotic Dis ; 20(9): 703-714, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32931404

RESUMO

Japanese encephalitis virus (JEV) and West Nile virus (WNV) are arboviruses primarily transmitted by Culex spp. mosquitoes. Birds are the primary hosts for JEV and WNV. Recent WNV outbreaks in Europe and United States and their association with migratory birds highlight the importance of understanding the feeding host preference of potential vectors for outbreak preparedness, especially in nonendemic settings. Singapore is nonendemic to JEV and WNV, but is a stopover site for migratory birds of the East Asian-Australasian Flyway. Therefore, we elucidated the feeding host range of Culex spp. mosquitoes captured in four natural (bird) habitats in Singapore from January 2011 to December 2012. We characterized feeding host DNA in field-caught mosquitoes using a PCR sequencing-based assay targeting the mitochondrial gene regions. Of 22,648 mosquitoes captured, 21,287 belonged to the Culex vishnui subgroup. The host DNA analysis showed that mosquitoes from the Cx. vishnui subgroup are opportunistic biters, feeding on a range of birds and mammals. Cx. vishnui subgroup, Culex sitiens and Culex bitaeniorhynchus, was primarily ornithophagic, although they fed opportunistically on mammals, including humans. Culex gelidus and Culex quinquefasciatus, in contrast, fed mainly on mammals. The presence of ornitho- and anthropophilic mosquito vectors and susceptible avian and mammalian hosts poses a risk spill-over transmission of JEV and WNV among humans, should these viruses be introduced through migratory birds and establish persistent transmission in resident birds and animal hosts in Singapore.


Assuntos
Culex/fisiologia , Comportamento Alimentar , Mosquitos Vetores/fisiologia , Animais , Aves/sangue , Aves/genética , Aves/parasitologia , Vírus da Encefalite Japonesa (Espécie) , Genes Mitocondriais , Mordeduras e Picadas de Insetos , Mamíferos/sangue , Mamíferos/genética , Mamíferos/parasitologia , Singapura , Vírus do Nilo Ocidental
4.
Am J Trop Med Hyg ; 103(3): 1234-1240, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32700679

RESUMO

Mosquito-borne flaviviruses are emerging pathogens of an increasing global public health concern because of their rapid increase in geographical range and the impact of climate change. Japanese encephalitis virus (JEV) and West Nile virus (WNV) are of concern because of the risk of reemergence and introduction by migratory birds. In Singapore, human WNV infection has never been reported and human JEV infection is rare. Four sentinel vector surveillance sites were established in Singapore to understand the potential risk posed by these viruses. Surveillance was carried out from August 2011 to December 2012 at Pulau Ubin, from March 2011 to March 2013 at an Avian Sanctuary (AS), from December 2010 from October 2012 at Murai Farmway, and from December 2010 to December 2013 at a nature reserve. The present study revealed active JEV transmission in Singapore through the detection of JEV genotype II in Culex tritaeniorhynchus collected from an Avian Sanctuary. Culex flavivirus (CxFV), similar to the Quang Binh virus isolated from Cx. tritaeniorhynchus in Vietnam and CxFV-LSFlaviV-A20-09 virus isolated in China, was also detected in Culex spp. (vishnui subgroup). No WNV was detected. This study demonstrates the important role that surveillance plays in public health and strongly suggests the circulation of JEV among wildlife in Singapore, despite the absence of reported human cases. A One Health approach involving surveillance, the collaboration between public health and wildlife managers, and control of mosquito populations remains the key measures in risk mitigation of JEV transmission in the enzootic cycle between birds and mosquitoes.


Assuntos
Culex/virologia , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/epidemiologia , Mosquitos Vetores/virologia , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/virologia , Monitoramento Epidemiológico , Feminino , Genótipo , Geografia , Humanos , Singapura/epidemiologia
5.
J Gen Virol ; 100(10): 1363-1374, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31418677

RESUMO

Bats are important reservoirs and vectors in the transmission of emerging infectious diseases. Many highly pathogenic viruses such as SARS-CoV and rabies-related lyssaviruses have crossed species barriers to infect humans and other animals. In this study we monitored the major roost sites of bats in Singapore, and performed surveillance for zoonotic pathogens in these bats. Screening of guano samples collected during the survey uncovered a bat coronavirus (Betacoronavirus) in Cynopterus brachyotis, commonly known as the lesser dog-faced fruit bat. Using a capture-enrichment sequencing platform, the full-length genome of the bat CoV was sequenced and found to be closely related to the bat coronavirus HKU9 species found in Leschenault's rousette discovered in the Guangdong and Yunnan provinces.


Assuntos
Quirópteros/virologia , Coronavirus/isolamento & purificação , Animais , Quirópteros/classificação , Coronavirus/classificação , Coronavirus/genética , Reservatórios de Doenças/virologia , Genoma Viral , Filogenia , Singapura
6.
Exp Appl Acarol ; 78(1): 127-132, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31093858

RESUMO

Interactions between ticks and crocodilians (crocodiles, alligators, caiman, and gharials) are poorly studied but may have significant bearing on the ecology and health of these reptiles. The first record of tick infestation of the saltwater crocodile (Crocodylus porosus) is reported along with the first case of infestation by Amblyomma cordiferum on Cuvier's dwarf caiman (Paleosuchus palpebrosus). A review is also provided of tick-crocodilian interactions with a concise host-parasite index.


Assuntos
Jacarés e Crocodilos , Interações Hospedeiro-Parasita , Ixodidae/fisiologia , Infestações por Carrapato/veterinária , Animais
7.
Parasit Vectors ; 12(1): 244, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101069

RESUMO

BACKGROUND: Singapore used to report an annual average of 14 cases of Japanese encephalitis, but ever since the abolishment of pig farms in the early 1990s, the local incidence rate for Japanese encephalitis virus (JEV) infections has reduced drastically. Studies done in the early 2000s demonstrated the presence of JEV-specific antibodies in animals such as wild boars, dogs, chickens and goats on the offshore island and peripheral parts of the Singapore, indicative of prior JEV exposure. A JEV wildlife and sentinel chicken surveillance system was initiated in 2010 through to 2017 to study the animal host seroprofiles. RESULTS: A total of 12/371 (3.23%) of resident bird samples, 24/254 (9.45%) of migratory bird samples and 10/66 (15.16%) of wild boar samples were positive for the presence of JEV antibodies. Seroconversions in sentinel chickens were observed at two time points. Through this study, two sites with active transmission of JEV amongst avian or porcine hosts were identified. CONCLUSIONS: JEV transmission in animal hosts has continued despite the phasing out of pig farming nearly thirty years ago; however, the public health risk of transmission remains low. Environmental management for mosquito population remains key to keeping this risk low.


Assuntos
Anticorpos Antivirais/sangue , Encefalite Japonesa/veterinária , Vigilância de Evento Sentinela/veterinária , Doenças dos Suínos/transmissão , Migração Animal , Animais , Aves/virologia , Galinhas/virologia , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/transmissão , Fazendas , Singapura/epidemiologia , Sus scrofa/virologia , Suínos/virologia , Doenças dos Suínos/virologia , Fatores de Tempo
8.
J Gen Virol ; 100(5): 838-850, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30907721

RESUMO

Avian pox is a highly contagious avian disease, yet relatively little is known about the epidemiology and transmission of Avipoxviruses. Using a molecular approach, we report evidence for a potential link between birds and field-caught mosquitoes in the transmission of Fowlpox virus (FWPV) in Singapore. Comparison of fpv167 (P4b), fpv126 (VLTF-1), fpv175-176 (A11R-A12L) and fpv140 (H3L) gene sequences revealed close relatedness between FWPV strains obtained from cutaneous lesions of a chicken and four pools of Culex pseudovishnui, Culex spp. (vishnui group) and Coquellitidea crassipes caught in the vicinity of the study site. Chicken-derived viruses characterized during two separate infections two years later were also identical to those detected in the first event, suggesting repeated transmission of closely related FWPV strains in the locality. Since the study location is home to resident and migratory birds, we postulated that wild birds could be the source of FWPV and that bird-biting mosquitoes could act as bridging mechanical vectors. Therefore, we determined whether the FWPV-positive mosquito pools (n=4) were positive for avian DNA using a polymerase chain reaction-sequencing assay. Our findings confirmed the presence of avian host DNA in all mosquito pools, suggesting a role for Cx. pseudovishnui, Culex spp. (vishnui group) and Cq. crassipes mosquitoes in FWPV transmission. Our study exemplifies the utilization of molecular tools to understand transmission networks of pathogens affecting avian populations, which has important implications for the design of effective control measures to minimize disease burden and economic loss.


Assuntos
Doenças das Aves/virologia , Galinhas/virologia , Culicidae/virologia , Vírus da Varíola das Aves Domésticas/genética , Varíola Aviária/transmissão , Varíola Aviária/virologia , Mosquitos Vetores/genética , Animais , Animais Selvagens , Filogenia , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA