Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Med Life ; 15(8): 951-954, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36188644

RESUMO

Medicinal plants have been widely used in healthcare based on traditional knowledge. We investigated the antimicrobial activities and phytochemical contents of a plant known as Blumea balsamifera (B. balsamifera), which Sabah native people have used for health benefits. Methanolic extracts and fractions of the leaves of B. balsamifera were tested for their phytochemical contents and their antimicrobial activities against four Gram-negative and five Gram-positive strains of bacteria. The extracts of B. balsamifera showed antimicrobial activities against three Gram-positive, and one Gram-negative bacteria, with the zone of inhibition ranging from 7.8 mm±0.41 to 10.5 mm±0.71. Fraction CE.F7 exerted the broadest antimicrobial activity towards four Gram-positive or Gram-negative bacteria. The phytochemical constituents identified in the extracts were alkaloid, flavonoid, steroid, and cardiac glycosides. The plant extract demonstrated antimicrobial activities and contained multiple phytochemical constituents. Further investigations into potential antimicrobial agents containing promising fractions would validate the medicinal properties of B. balsamifera used in Sabah.


Assuntos
Anti-Infecciosos , Asteraceae , Glicosídeos Cardíacos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Asteraceae/química , Flavonoides , Humanos , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Esteroides
2.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408690

RESUMO

Dibutyl phthalate (DBP) produced by Streptomyces sp. H11809 exerted inhibitory activity against human GSK-3ß (Hs GSK-3ß) and Plasmodiumfalciparum 3D7 (Pf 3D7) malaria parasites. The current study aimed to determine DBP's plausible mode of action against Hs GSK-3ß and Pf 3D7. Molecular docking analysis indicated that DBP has a higher binding affinity to the substrate-binding site (pocket 2; -6.9 kcal/mol) than the ATP-binding site (pocket 1; -6.1 kcal/mol) of Hs GSK-3ß. It was suggested that the esters of DBP play a pivotal role in the inhibition of Hs GSK-3ß through the formation of hydrogen bonds with Arg96/Glu97 amino acid residues in pocket 2. Subsequently, an in vitro Hs GSK-3ß enzymatic assay revealed that DBP inhibits the activity of Hs GSK-3ß via mixed inhibition inhibitory mechanisms, with a moderate IC50 of 2.0 µM. Furthermore, the decrease in Km value with an increasing DBP concentration suggested that DBP favors binding on free Hs GSK-3ß over its substrate-bound state. However, the antimalarial mode of action of DBP remains unknown since the generation of a Pf 3D7 DBP-resistant clone was not successful. Thus, the molecular target of DBP might be indispensable for Pf survival. We also identified nocardamine as another active compound from Streptomyces sp. H11809 chloroform extract. It showed potent antimalarial activity with an IC50 of 1.5 µM, which is ~10-fold more potent than DBP, but with no effect on Hs GSK-3ß. The addition of ≥12.5 µM ferric ions into the Pf culture reduced nocardamine antimalarial activity by 90% under in vitro settings. Hence, the iron-chelating ability of nocardamine was shown to starve the parasites from their iron source, eventually inhibiting their growth.


Assuntos
Antimaláricos , Streptomyces , Antimaláricos/farmacologia , Dibutilftalato , Glicogênio Sintase Quinase 3 beta , Humanos , Simulação de Acoplamento Molecular , Peptídeos Cíclicos
3.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215343

RESUMO

Carpaine has long been identified as the major alkaloid in Carica papaya leaves that possess muscle relaxant properties. Limited study on the molecular signaling properties of carpaine urges us to conduct this study that aims to elucidate the mechanism underlying the cardioprotective effect of carpaine in embryonic cardiomyocytes of the H9c2 cell line. The 50% inhibitory concentration (IC50) of carpaine was first determined using a colorimetric MTT assay to establish the minimum inhibitory concentration for the subsequent test. Using a 1 µM carpaine treatment, a significant increase in the H9c2 proliferation rate was observed following 24 and 48 h of incubation. A Western blot analysis also revealed that carpaine promotes the upregulation of the cell cycle marker proteins cyclin D1 and PCNA. Carpaine-induced H9c2 cell proliferation is mediated by the activation of the FAK-ERK1/2 and FAK-AKT signaling pathways. In the setting of ischemia-reperfusion injury (IRI), carpaine provided a significant protective role to recover the wounded area affected by the hydrogen peroxide (H2O2) treatment. Furthermore, the oxidative-stress-induced reduction in mitochondrial membrane potential (MMP) and overproduction of reactive oxygen species (ROS) were attenuated by carpaine treatment. The current study revealed a novel therapeutic potential of carpaine in promoting in vitro cardiomyocyte proliferation and repair following injury.

4.
Molecules ; 26(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834094

RESUMO

Nephelium lappaceum (N. lappaceum) and Nephelium ramboutan-ake (N. ramboutan-ake) are tropical fruits that gain popularity worldwide due to their tastiness. Currently, their potential to be used as pharmaceutical agents is underestimated. Chronic diseases such as cancer, diabetes and aging have high incidence rates in the modern world. Furthermore, pharmaceutical agents targeting pathogenic microorganisms have been hampered by the growing of antimicrobial resistance threats. The idea of food therapy leads to extensive nutraceuticals research on the potential of exotic fruits such as N. lappaceum and N. ramboutan-ake to act as supplements. Phytochemicals such as phenolic compounds that present in the fruit act as potent antioxidants that contribute to the protective effects against diseases induced by oxidative stress. Fruit residuals such as the peel and seeds hold greater nutraceutical potential than the edible part. This review highlights the antioxidant and biological activities (anti-neoplastic, anti-microbial, hypoglycemic actions and anti-aging), and chemical contents of different parts of N. lappaceum and N. ramboutan-ake. These fruits contain a diverse and important chemical profile that can alleviate or cure diseases.


Assuntos
Antioxidantes , Suplementos Nutricionais , Frutas/química , Compostos Fitoquímicos , Extratos Vegetais/química , Sapindaceae/química , Antioxidantes/química , Antioxidantes/uso terapêutico , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico
5.
Polymers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641106

RESUMO

Graphene oxide (GO) is extensively studied as a template material for mesenchymal stem cell application due to its two-dimensional nature and unique functionalization chemistries. Herein, a new type of peptide-conjugated multilayer graphene oxide (peptide/m-GO film) was fabricated and used as biomaterial for culturing human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). The characterization of the peptide/m-GO films was performed, and the biocompatibility of the WJ-MSCs on the peptide/m-GO films was investigated. The results demonstrated that the peptide conjugate on the m-GO film did not hamper the normal growth of WJ-MSCs but supported the growth of WJ-MSCs after the 6-day culture period. In addition, the osteogenic differentiation of WJ-MSCs on the peptide/m-GO films was enhanced as compared with the parent m-GO film. Therefore, such peptide-conjugated m-GO films could provide a highly biocompatible and multifunctional 2D material to tailor the potential application of WJ-MSCs in bone tissue regeneration.

6.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502544

RESUMO

Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Cerâmica/química , Hidroxiapatitas/química , Células-Tronco Mesenquimais/fisiologia , Nanocompostos/química , Geleia de Wharton/citologia , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Transmissão/métodos , Nanocompostos/ultraestrutura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
J Vis Exp ; (139)2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30247461

RESUMO

Cellular microenvironments consist of a variety of cues, such as growth factors, extracellular matrices, and intercellular interactions. These cues are well orchestrated and are crucial in regulating cell functions in a living system. Although a number of researchers have attempted to investigate the correlation between environmental factors and desired cellular functions, much remains unknown. This is largely due to the lack of a proper methodology to mimic such environmental cues in vitro, and simultaneously test different environmental cues on cells. Here, we report an integrated platform of microfluidic channels and a nanofiber array, followed by high-content single-cell analysis, to examine stem cell phenotypes altered by distinct environmental factors. To demonstrate the application of this platform, this study focuses on the phenotypes of self-renewing human pluripotent stem cells (hPSCs). Here, we present the preparation procedures for a nanofiber array and the microfluidic structure in the fabrication of a Multiplexed Artificial Cellular MicroEnvironment (MACME) array. Moreover, overall steps of the single-cell profiling, cell staining with multiple fluorescent markers, multiple fluorescence imaging, and statistical analyses, are described.


Assuntos
Microambiente Celular/fisiologia , Diferenciação Celular , Humanos
8.
Small ; 13(18)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28272774

RESUMO

Cellular microenvironments are generally sophisticated, but crucial for regulating the functions of human pluripotent stem cells (hPSCs). Despite tremendous effort in this field, the correlation between the environmental factors-especially the extracellular matrix and soluble cell factors-and the desired cellular functions remains largely unknown because of the lack of appropriate tools to recapitulate in vivo conditions and/or simultaneously evaluate the interplay of different environment factors. Here, a combinatorial platform is developed with integrated microfluidic channels and nanofibers, associated with a method of high-content single-cell analysis, to study the effects of environmental factors on stem cell phenotype. Particular attention is paid to the dependence of hPSC short-term self-renewal on the density and composition of extracellular matrices and initial cell seeding densities. Thus, this combinatorial approach provides insights into the underlying chemical and physical mechanisms that govern stem cell fate decisions.


Assuntos
Células-Tronco Embrionárias/citologia , Microfluídica/métodos , Nanofibras/química , Animais , Microambiente Celular , Humanos
9.
Biomaterials ; 35(23): 5998-6005, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24780167

RESUMO

Mesenchymal stems cells (MSCs) are currently the focus of numerous therapeutic approaches in tissue engineering/repair because of their wide multi-lineage potential and their ability to modulate the immune system response following transplantation. Culturing these cells, while maintaining their multipotency in vitro, currently relies on biological substrates such as gelatin, collagen and fibronectin. In addition, harvesting cells from these substrates requires enzymatic or chemical treatment, a process that will remove a multitude of cellular surface proteins, clearly an undesirable process if cells are to be used therapeutically. Herein, we applied a high-throughput 'hydrogel microarray' screening approach to identify thermo-modulatable substrates which can support hES-MP and ADMSC growth, permit gentle reagent free passaging, whilst maintaining multi-lineage potential. In summary, the hydrogel substrate identified, poly(AEtMA-Cl-co-DEAA) cross-linked with MBA, permitted MSCs to be maintained over 10 passages (each time via thermo-modulation), with the cells retaining expression of MSC associated markers and lineage potency. This chemically defined system allowed the passaging and maintenance of cellular phenotype of this clinically important cell type, in the absence of harsh passaging and the need for biological substrates.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Bioensaio/instrumentação , Enzimas/metabolismo , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual/instrumentação , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Análise em Microsséries/instrumentação , Polímeros/química
10.
Biomater Sci ; 2(11): 1683-1692, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32481948

RESUMO

Mesenchymal stem cells (MSCs) hold great promise in regenerative medicine due to their wide multilineage potential as well as their ability to suppress/modulate the immune response. Maintaining these cells in vitro and expanding them on a clinically relevant scale remains a challenge that needs to be addressed to realise their full potential. Current culture methods for MSCs typically rely on animal sourced substrates and often result in a heterogeneous population of cells with varying degrees of differentiation capacity. Here, a high-throughput platform was used to identify synthetic substrates for MSC culture that not only facilitated growth but also maintained the MSC phenotype. Two polymers, PU157 (synthesised from poly(butyleneglycol) and 4,4'-methylenediphenyldiisocyanate with 3-(dimethylamino)-1,2-propanediol as a chain extender) and PA338 (N-methylaniline modified poly(methylmethacrylate-co-glycidylmethacrylate)) were able to maintain the growth and phenotype of human embryonic derived mesenchymal progenitors (hES-MPs) and adipose derived MSCs (ADMSCs) for five and ten passages, respectively. Cell phenotype and multipotency were confirmed by flow cytometry analysis of ten MSC markers and differentiation analysis. These new polymer substrates provide a chemically defined synthetic surface for efficient, long-term MSC culture.

11.
J Food Sci Technol ; 50(2): 275-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24425917

RESUMO

Central composite design of response surface methodology (RSM) was employed to optimize the extraction time (X 1 : 99.5-290.5 min) and temperature (X 2 : 30.1-54.9 °C) of Schizophyllum commune aqueous extract with high antioxidant activities and total phenolic content (TPC). Results indicated that the data were adequately fitted into four second-order polynomial models. The extraction time and temperature were found to have significant linear, quadratic and interaction effects on antioxidant activities and TPC. The optimal extraction time and temperature were: 290.5 min and 35.7 °C (DPPH(•) scavenging ability); 180.7 min and 41.7 °C (ABTS(•+) inhibition ability); 185.2 min and 42.4 °C (ferric reducing antioxidant power, FRAP); 290.5 min and 40.3 °C (TPC). These optimum conditions yielded 85.10%; 94.31%; 0.74 mM Fe(2+) equivalent/100 g; 635.76 mg gallic acid equivalent/100 g, respectively. The yields of antioxidant activities and TPC obtained experimentally were close to its predicted values. The establishment of such model provides a good experimental basis employing RSM for optimizing the extraction time and temperature on antioxidants from S. commune aqueous extract.

12.
Int J Med Mushrooms ; 13(3): 245-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22135876

RESUMO

The present study aims to assess the antioxidant activities (AOA) and total phenolic content (TPC) of water extracts of selected edible wild mushrooms: Pleurotus porrigens, Schizophyllum commune, Hygrocybe conica, and Lentinus ciliatus. The AOA were evaluated against DPPH radical and ABTS radical cation scavenging ability, ferric-reducing antioxidant power (FRAP) and beta-carotene-linoleate bleaching (beta-CB) assays, and the Folin-Ciocalteu method for TPC. BHA was used as reference. P. porrigens showed significantly higher (p < 0.05) DPPH* scavenging ability (90.78 +/- 0.30%) and FRAP (6.37 +/- 0.22 mM FE/100g), while Sch. commune showed significantly higher (p < 0.05) ABTS*+ inhibition activity (94.96 +/- 0.70%) and beta-CB inhibition activity (94.18 +/- 0.17%), respectively. TPC was found in a descending order of P. poriggens > L. ciliatus = Pleurotus ostreatus (cultivated) > H. conica = Sch. commune. Positive correlation was observed between the AOA and TPC. When compared to BHA (2 mM), P. porrigens showed significantly higher (p < 0.05) DPPH* scavenging ability and reducing power, while Sch. commune showed comparable DPPH* scavenging ability and ABTS*+ inhibition activity. All the mushrooms have better ABTS*+ inhibition activity than BHA (1 mM). The beta-CB inhibition activity of BHA was significantly higher than those of edible wild mushrooms. The water extracts of edible wild mushrooms showed potent antioxidant activities compared to BHA to a certain extent.


Assuntos
Agaricales/química , Antioxidantes/farmacologia , Misturas Complexas/farmacologia , Sequestradores de Radicais Livres/farmacologia , Fenóis/farmacologia , Compostos de Bifenilo/metabolismo , Hidroxianisol Butilado/farmacologia , Misturas Complexas/química , Fenóis/análise , Picratos/metabolismo , beta Caroteno/metabolismo
13.
Org Biomol Chem ; 6(13): 2266-9, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18563258

RESUMO

Solid-phase synthesis of a generation 3.0 polyamidourea 1-->3 C-branched bis-dendron followed by capping of the peripheral amino groups with L-lysine gave an efficient transfection reagent.


Assuntos
DNA/genética , Dendrímeros/síntese química , Dendrímeros/metabolismo , Técnicas de Transferência de Genes/instrumentação , Lisina/química , Linhagem Celular , DNA/química , Dendrímeros/química , Eletroforese , Humanos
15.
Comb Chem High Throughput Screen ; 6(7): 577-87, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14683488

RESUMO

Advances in high throughput screening (HTS), together with the rapid progress in combinatorial chemistry, genomic and proteomic sciences have dramatically stimulated the development of a variety tools to enable the drug discovery process to become more efficient. Major future challenges in HTS include obtaining high density and good quality data based on assays that are rapid, reliable, inexpensive, sensitive, simple and miniaturised. This paper reviews the development and role of bead-based assays for HTS including DNA and single nucleotide polymorphism (SNP) assays, particularly from a multiplex perspective and evaluating the recent advances in bead-based arrays. The encoding strategies that are commonly used in bead-based assays are highlighted, while the importance of magnetic beads in genomic and proteomic purifications is discussed. In conclusion, bead-based assays offer a powerful promising approach for many aspects of drug discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Microesferas , Técnicas de Química Combinatória , DNA/análise , Genômica/métodos , Proteínas/análise , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA