Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Clin Microbiol ; 61(12): e0079923, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37971271

RESUMO

In 2017, the Centers for Disease Control and Prevention (CDC) established the Antimicrobial Resistance Laboratory Network to improve domestic detection of multidrug-resistant organisms. CDC and four laboratories evaluated a commercial broth microdilution panel. Antimicrobial susceptibility testing using the Sensititre GN7F (ThermoFisher Scientific, Lenexa, KS) was evaluated by testing 100 CDC and Food and Drug Administration AR Isolate Bank isolates [40 Enterobacterales (ENT), 30 Pseudomonas aeruginosa (PSA), and 30 Acinetobacter baumannii (ACB)]. We assessed multiple amounts of transfer volume (TV) between the inoculum and tubed 11-mL cation-adjusted Mueller-Hinton broth: 1 µL [tribe Proteeae (P-tribe) only] and 10, 30, and 50 µL, resulting in respective CFU per milliter of 1 × 104, 1 × 105, 3 × 105, and 5 × 105. Four TV combinations were analyzed: standard (STD) [1 µL (P-tribe) and 10 µL], enhanced standard (E-STD) [1 µL (P-tribe) and 30 µL], 30 µL, and 50 µL. Essential agreement (EA), categorical agreement, major error (ME), and very major error (VME) were analyzed by organism then TVs. For ENT, the average EA across laboratories was <90% for 7 of 15 ß-lactams using STD and E-STD TVs. As TVs increased, EA increased (>90%), and VMEs decreased. For PSA, EA improved as TVs increased; however, MEs also increased. For ACB, increased TVs provided slight EA improvements; all TVs yielded multiple VMEs and MEs. For ENT and ACB, Minimum inhibitory concentrations (MICs) trended downward using a 1 or 10 µL TV; there were no obvious MIC trends by TV for PSA. The public health and clinical consequences of missing resistance warrant increased TV of 30 µL for the GN7F, particularly for P-tribe, despite being considered "off-label" use.


Assuntos
Acinetobacter baumannii , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Laboratórios , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
2.
Microbiol Resour Announc ; 12(9): e0029323, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37650621

RESUMO

The complete genome of Kalamiella piersonii clinical isolate URMC-2103A041 from human bacteremia was determined using the hybrid assembly of short- and long-read sequencing chemistry. The genome contains a 3.93 Mb chromosome, three circular plasmids, and one linear plasmid.

3.
J Clin Microbiol ; 61(5): e0004623, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37129508

RESUMO

Campylobacter ureolyticus is an emerging pathogen increasingly appreciated as a common cause of gastroenteritis and extra-intestinal infections in humans. Outside the setting of gastroenteritis, little work has been done to describe the genomic content and relatedness of the species, especially regarding clinical isolates. We reviewed the epidemiology of clinical C. ureolyticus cultured by our institution over the past 10 years. Fifty-one unique C. ureolyticus isolates were identified between January 2010 and August 2022, mostly originating from abscesses and blood cultures. To clarify the taxonomic relationships between isolates and to attribute specific genes with different clinical manifestations, we sequenced 19 available isolates from a variety of clinical specimen types and conducted a pangenomic analysis with publicly available C. ureolyticus genomes. Digital DNA:DNA hybridization suggested that these C. ureolyticus comprised a species complex of 10 species clusters (SCs) and several subspecies clusters. Although some orthologous genes or gene functions were enriched in isolates found in different SCs and clinical specimens, no association was significant. Nearly a third of the isolates possessed antimicrobial resistance genes, including the ermA resistance gene, potentially conferring resistance to macrolides, the treatment of choice for severe human campylobacteriosis. This work effectively doubles the number of publicly available C. ureolyticus genomes, provides further clarification of taxonomic relationships within this bacterial complex, and identifies target SCs for future analysis.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Gastroenterite , Humanos , Infecções por Campylobacter/microbiologia , Genômica , Antibacterianos , Gastroenterite/microbiologia , DNA , Campylobacter jejuni/genética
4.
Microbiol Resour Announc ; 11(12): e0084622, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36374079

RESUMO

The genomes of two human monkeypox virus strains from recently reported cases in our local region that were associated with the 2022 global outbreak were sequenced. Genomes from clinical isolates provide valuable information for epidemiological tracking and analysis of strain evolution and can be especially important during the early phases of outbreaks.

5.
Water Res ; 225: 119162, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191524

RESUMO

Surface water quality quantitative polymerase chain reaction (qPCR) technologies are expanding from a subject of research to routine environmental and public health laboratory testing. Readily available, reliable reference material is needed to interpret qPCR measurements, particularly across laboratories. Standard Reference Material® 2917 (NIST SRM® 2917) is a DNA plasmid construct that functions with multiple water quality qPCR assays allowing for estimation of total fecal pollution and identification of key fecal sources. This study investigates SRM 2917 interlaboratory performance based on repeated measures of 12 qPCR assays by 14 laboratories (n = 1008 instrument runs). Using a Bayesian approach, single-instrument run data are combined to generate assay-specific global calibration models allowing for characterization of within- and between-lab variability. Comparable data sets generated by two additional laboratories are used to assess new SRM 2917 data acceptance metrics. SRM 2917 allows for reproducible single-instrument run calibration models across laboratories, regardless of qPCR assay. In addition, global models offer multiple data acceptance metric options that future users can employ to minimize variability, improve comparability of data across laboratories, and increase confidence in qPCR measurements.


Assuntos
Benchmarking , Qualidade da Água , Teorema de Bayes , Reação em Cadeia da Polimerase em Tempo Real , DNA
6.
Infect Immun ; 87(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617203

RESUMO

Indole is a degradation product of tryptophan that functions as a signaling molecule in many bacteria. This includes Vibrio cholerae, where indole was shown to regulate biofilm and type VI secretion in nontoxigenic environmental isolates. Indole is also produced by toxigenic V. cholerae strains in the human intestine, but its significance in the host is unknown. We investigated the effects of indole on toxigenic V. cholerae O1 El Tor during growth under virulence inducing conditions. The indole transcriptome was defined by RNA sequencing and showed widespread changes in the expression of genes involved in metabolism, biofilm production, and virulence factor production. In contrast, genes involved in type VI secretion were not affected by indole. We subsequently found that indole repressed genes involved in V. cholerae pathogenesis, including the ToxR virulence regulon. Consistent with this, indole inhibited cholera toxin and toxin-coregulated pilus production in a dose-dependent manner. The effects of indole on virulence factor production and biofilm were linked to ToxR and the ToxR-dependent regulator LeuO. The expression of leuO was increased by exogenous indole and linked to repression of the ToxR virulence regulon. This process was dependent on the ToxR periplasmic domain, suggesting that indole was a ToxR agonist. This conclusion was further supported by results showing that the ToxR periplasmic domain contributed to indole-mediated increased biofilm production. Collectively, our results suggest that indole may be a niche-specific cue that can function as a ToxR agonist to modulate virulence gene expression and biofilm production in V. cholerae.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Fatores de Transcrição/metabolismo , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Mutação , Regulon , Fatores de Transcrição/genética , Vibrio cholerae/genética
7.
PLoS Pathog ; 14(1): e1006804, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304169

RESUMO

Resistance-nodulation-division (RND) efflux systems are ubiquitous transporters in Gram-negative bacteria that are essential for antibiotic resistance. The RND efflux systems also contribute to diverse phenotypes independent of antimicrobial resistance, but the mechanism by which they affect most of these phenotypes is unclear. This is the case in Vibrio cholerae where the RND systems function in antimicrobial resistance and virulence factor production. Herein, we investigated the linkage between RND efflux and V. cholerae virulence. RNA sequencing revealed that the loss of RND efflux affected the activation state of periplasmic sensing systems including the virulence regulator ToxR. Activation of ToxR in an RND null mutant resulted in ToxR-dependent transcription of the LysR-family regulator leuO. Increased leuO transcription resulted in the repression of the ToxR virulence regulon and attenuated virulence factor production. Consistent with this, leuO deletion restored virulence factor production in an RND-null mutant, but not its ability to colonize infant mice; suggesting that RND efflux was epistatic to virulence factor production for colonization. The periplasmic sensing domain of ToxR was required for the induction of leuO transcription in the RND null mutant, suggesting that ToxR responded to metabolites that accumulated in the periplasm. Our results suggest that ToxR represses virulence factor production in response to metabolites that are normally effluxed from the cell by the RND transporters. We propose that impaired RND efflux results in periplasmic metabolite accumulation, which then activates periplasmic sensors including ToxR and two-component regulatory systems to initiate the expression of adaptive responses.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/fisiologia , Farmacorresistência Bacteriana , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Periplásmicas/fisiologia , Vibrio cholerae , Fatores de Virulência/metabolismo , Adaptação Fisiológica/genética , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Camundongos , Organismos Geneticamente Modificados , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Fatores de Virulência/genética
8.
Infect Immun ; 84(11): 3161-3171, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27550934

RESUMO

Vibrio cholerae is an intestinal pathogen that causes the diarrheal disease cholera. Colonization of the intestine depends upon the expression of genes that allow V. cholerae to overcome host barriers, including low pH, bile acids, and the innate immune system. ToxR is a major contributor to this process. ToxR is a membrane-spanning transcription factor that coordinates gene expression in response to environmental cues. In previous work we showed that ToxR upregulated leuO expression in response to bile salts. LeuO is a LysR family transcription factor that contributes to acid tolerance, bile resistance, and biofilm formation in V. cholerae Here, we investigated the function of ToxR and LeuO in cationic antimicrobial peptide (CAMP) resistance. We report that ToxR and LeuO contribute to CAMP resistance by regulating carRS transcription. CarRS is a two-component regulatory system that positively regulates almEFG expression. AlmEFG confers CAMP resistance by glycinylation of lipid A. We found that the expression of carRS and almEFG and the polymyxin B MIC increased in mutants lacking toxRS or leuO Conversely, leuO overexpression decreased the polymyxin B MIC. Furthermore, we found that LeuO directly bound to the carRS promoter and that ToxR-dependent activation of leuO transcription regulated carRS transcription in response to bile salts. Our results suggest that LeuO functions downstream of ToxR to modulate carRS expression in response to environmental cues. This study extends the functional role of ToxR and LeuO in environmental adaptation to include cell surface remodeling and CAMP resistance.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Lipídeo A/metabolismo , Regulon/fisiologia , Fatores de Transcrição/genética , Vibrio cholerae/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Lipídeo A/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Vibrio cholerae/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-27148404

RESUMO

BACKGROUND: Tuberculosis (TB) chemotherapy clears bacterial burden in the lungs of patients and allows the tuberculous lesions to heal through a fibrotic process. The healing process leaves pulmonary scar tissue that can impair lung function. The goal of this study was to identify fibrotic mediators as a stepping-stone to begin exploring mechanisms of tissue repair in TB. METHODS: Hematoxylin and eosin staining and Masson's trichrome stain were utilized to determine levels of collagenization in tuberculous granulomas from non-human primates. Immunohistochemistry was then employed to further interrogate these granulomas for markers associated with fibrogenesis, including transforming growth factor-ß (TGFß), α-smooth muscle actin (αSMA), phosphorylated SMAD-2/3, and CD163. These markers were compared across states of drug treatment using one-way ANOVA, and Pearson's test was used to determine the association of these markers with one another. RESULTS: TGFß and αSMA were present in granulomas from primates with active TB disease. These molecules were reduced in abundance after TB chemotherapy. Phosphorylated SMAD-2/3, a signaling intermediate of TGFß, was observed in greater amounts after 1 month of drug treatment than in active disease, suggesting that this particular pathway is blocked in active disease. Collagen production during tissue repair is strongly associated with TGFß in this model, but not with CD163+ macrophages. CONCLUSIONS: Tissue repair and fibrosis in TB that occurs during drug treatment is associated with active TGFß that is produced during active disease. Further work will identify mechanisms of fibrosis and work towards mitigating lung impairment with treatments that target those mechanisms.

10.
J Bacteriol ; 197(22): 3499-510, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303831

RESUMO

UNLABELLED: Vibrio cholerae is an aquatic organism and facultative human pathogen that colonizes the small intestine. In the small intestine, V. cholerae is exposed to a variety of antimicrobial compounds, including bile. V. cholerae resistance to bile is multifactorial and includes alterations in the membrane permeability barrier that are mediated by ToxR, a membrane-associated transcription factor. ToxR has also been shown to be required for activation of the LysR family transcription factor leuO in response to cyclic dipeptides. LeuO has been implicated in the regulation of multiple V. cholerae phenotypes, including biofilm production and virulence. In this study, we investigated the effects of bile on leuO expression. We show that leuO transcription increased in response to bile and bile salts but not in response to other detergents. The bile-dependent increase in leuO expression was dependent on ToxR, which was found to bind directly to the leuO promoter. The periplasmic domain of ToxR was required for basal leuO expression and for the bile-dependent induction of both leuO and ompU transcription. V. cholerae mutants that did not express leuO exhibited increased bile susceptibility, suggesting that LeuO contributes to bile resistance. Our collective results demonstrate that ToxR activates leuO expression in response to bile and that LeuO is a component of the ToxR-dependent responses that contribute to bile resistance. IMPORTANCE: The success of Vibrio cholerae as a human pathogen is dependent upon its ability to rapidly adapt to changes in its growth environment. Growth in the human gastrointestinal tract requires the expression of genes that provide resistance to host antimicrobial compounds, including bile. In this work, we show for the first time that the LysR family regulator LeuO mediates responses in V. cholerae that contribute to bile resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/farmacologia , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fatores de Transcrição/metabolismo , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Fatores de Transcrição/genética , Vibrio cholerae/genética
11.
PLoS One ; 10(2): e0117890, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695834

RESUMO

Vibrio cholerae encodes six resistance-nodulation-division (RND) efflux systems which function in antimicrobial resistance, virulence factor production, and intestinal colonization. Among the six RND efflux systems, VexAB exhibited broad substrate specificity and played a predominant role in intrinsic antimicrobial resistance. The VexAB system was encoded in an apparent three gene operon that included vexR; which encodes an uncharacterized TetR family regulator. In this work we examined the role of vexR in vexRAB expression. We found that VexR bound to the vexRAB promoter and vexR deletion resulted in decreased vexRAB expression and increased susceptibility to VexAB antimicrobial substrates. Substrate-dependent induction of vexRAB was dependent on vexR and episomal vexR expression provided a growth advantage in the presence of the VexAB substrate deoxycholate. The expression of vexRAB increased, in a vexR-dependent manner, in response to the loss of RND efflux activity. This suggested that VexAB may function to export intracellular metabolites. Support for this hypothesis was provided by data showing that vexRAB was upregulated in several metabolic mutants including tryptophan biosynthetic mutants that were predicted to accumulate indole. In addition, vexRAB was found to be upregulated in response to exogenous indole and to contribute to indole resistance. The collective results indicate that vexR is required for vexRAB expression in response to VexAB substrates and that the VexAB RND efflux system modulates the intracellular levels of metabolites that could otherwise accumulate to toxic levels.


Assuntos
Proteínas de Bactérias/metabolismo , Vibrio cholerae/metabolismo , Fatores de Virulência/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Testes de Sensibilidade Microbiana , Mutação , Óperon/genética , Regiões Promotoras Genéticas , Ligação Proteica , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA