Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38978658

RESUMO

Combining predictions from multiple models into an ensemble is a widely used practice across many fields with demonstrated performance benefits. The R package hubEnsembles provides a flexible framework for ensembling various types of predictions, including point estimates and probabilistic predictions. A range of common methods for generating ensembles are supported, including weighted averages, quantile averages, and linear pools. The hubEnsembles package fits within a broader framework of open-source software and data tools called the "hubverse", which facilitates the development and management of collaborative modelling exercises.

2.
Epidemics ; 47: 100775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838462

RESUMO

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.


Assuntos
COVID-19 , Técnicas de Apoio para a Decisão , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Previsões , SARS-CoV-2 , Doenças Transmissíveis/epidemiologia , Pandemias/prevenção & controle , Tomada de Decisões , Projetos de Pesquisa
3.
Epidemics ; 47: 100767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714099

RESUMO

Mathematical models are useful for public health planning and response to infectious disease threats. However, different models can provide differing results, which can hamper decision making if not synthesized appropriately. To address this challenge, multi-model hubs convene independent modeling groups to generate ensembles, known to provide more accurate predictions of future outcomes. Yet, these hubs are resource intensive, and how many models are sufficient in a hub is not known. Here, we compare the benefit of predictions from multiple models in different contexts: (1) decision settings that depend on predictions of quantitative outcomes (e.g., hospital capacity planning), where assessments of the benefits of multi-model ensembles have largely focused; and (2) decisions settings that require the ranking of alternative epidemic scenarios (e.g., comparing outcomes under multiple possible interventions and biological uncertainties). We develop a mathematical framework to mimic a multi-model prediction setting, and use this framework to quantify how frequently predictions from different models agree. We further explore multi-model agreement using real-world, empirical data from 14 rounds of U.S. COVID-19 Scenario Modeling Hub projections. Our results suggest that the value of multiple models could be different in different decision contexts, and if only a few models are available, focusing on the rank of alternative epidemic scenarios could be more robust than focusing on quantitative outcomes. Although additional exploration of the sufficient number of models for different contexts is still needed, our results indicate that it may be possible to identify decision contexts where it is robust to rely on fewer models, a finding that can inform the use of modeling resources during future public health crises.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Doenças Transmissíveis/epidemiologia , COVID-19/epidemiologia , Epidemias/estatística & dados numéricos , SARS-CoV-2 , Modelos Teóricos , Modelos Epidemiológicos , Saúde Pública , Previsões/métodos
4.
PLoS Med ; 21(4): e1004387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630802

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Estados Unidos/epidemiologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso de 80 Anos ou mais , Masculino
5.
Ecol Appl ; 34(4): e2974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646794

RESUMO

A wide range of approaches has been used to manage the spread of invasive species, yet invaders continue to be a challenge to control. In some cases, management actions have no effect or may even inadvertently benefit the targeted invader. Here, we use the mid-20th century management of the Red Imported Fire Ant, Solenopsis invicta, in the US as a motivating case study to explore the conditions under which such wasted management effort may occur. Introduced in approximately 1940, the fire ant spread widely through the southeast US and became a problematic pest. Historically, fire ants were managed with broad-spectrum pesticides; unfortunately, these efforts were largely unsuccessful. One hypothesis suggests that, by also killing native ants, mass pesticide application reduced competitive burdens thereby enabling fire ants to invade more quickly than they would in the absence of management. We use a mechanistic competition model to demonstrate the landscape-level effects of such management. We explicitly model the extent and location of pesticide applications, showing that the same pesticide application can have a positive, neutral, or negative effect on the progress of an invasion, depending on where it is applied on the landscape with respect to the invasion front. When designing management, the target species is often considered alone; however, this work suggests that leveraging existing biotic interactions, specifically competition with native species, can increase the efficacy of management. Our model not only highlights the potential unintended consequences of ignoring biotic interactions, but also provides a framework for developing spatially explicit management strategies that take advantage of these biotic interactions to work smarter, not harder.


Assuntos
Formigas , Espécies Introduzidas , Animais , Formigas/fisiologia , Modelos Biológicos , Praguicidas , Controle de Insetos/métodos
6.
Epidemics ; 46: 100748, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394928

RESUMO

Throughout the COVID-19 pandemic, scenario modeling played a crucial role in shaping the decision-making process of public health policies. Unlike forecasts, scenario projections rely on specific assumptions about the future that consider different plausible states-of-the-world that may or may not be realized and that depend on policy interventions, unpredictable changes in the epidemic outlook, etc. As a consequence, long-term scenario projections require different evaluation criteria than the ones used for traditional short-term epidemic forecasts. Here, we propose a novel ensemble procedure for assessing pandemic scenario projections using the results of the Scenario Modeling Hub (SMH) for COVID-19 in the United States (US). By defining a "scenario ensemble" for each model and the ensemble of models, termed "Ensemble2", we provide a synthesis of potential epidemic outcomes, which we use to assess projections' performance, bypassing the identification of the most plausible scenario. We find that overall the Ensemble2 models are well-calibrated and provide better performance than the scenario ensemble of individual models. The ensemble procedure accounts for the full range of plausible outcomes and highlights the importance of scenario design and effective communication. The scenario ensembling approach can be extended to any scenario design strategy, with potential refinements including weighting scenarios and allowing the ensembling process to evolve over time.


Assuntos
COVID-19 , Pandemias , Humanos , Estados Unidos/epidemiologia , Previsões , COVID-19/epidemiologia , Política Pública , Comunicação
7.
Epidemics ; 46: 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184954

RESUMO

Between December 2020 and April 2023, the COVID-19 Scenario Modeling Hub (SMH) generated operational multi-month projections of COVID-19 burden in the US to guide pandemic planning and decision-making in the context of high uncertainty. This effort was born out of an attempt to coordinate, synthesize and effectively use the unprecedented amount of predictive modeling that emerged throughout the COVID-19 pandemic. Here we describe the history of this massive collective research effort, the process of convening and maintaining an open modeling hub active over multiple years, and attempt to provide a blueprint for future efforts. We detail the process of generating 17 rounds of scenarios and projections at different stages of the COVID-19 pandemic, and disseminating results to the public health community and lay public. We also highlight how SMH was expanded to generate influenza projections during the 2022-23 season. We identify key impacts of SMH results on public health and draw lessons to improve future collaborative modeling efforts, research on scenario projections, and the interface between models and policy.


Assuntos
COVID-19 , Influenza Humana , Humanos , COVID-19/epidemiologia , Influenza Humana/epidemiologia , Pandemias , Políticas , Saúde Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA