Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Pathogens ; 11(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145477

RESUMO

Low glucose-6-phosphate dehydrogenase enzyme (G6PD) activity is a key determinant of drug-induced haemolysis. More than 230 clinically relevant genetic variants have been described. We investigated the variation in G6PD activity within and between different genetic variants. In this systematic review, individual patient data from studies reporting G6PD activity measured by spectrophotometry and corresponding the G6PD genotype were pooled (PROSPERO: CRD42020207448). G6PD activity was converted into percent normal activity applying study-specific definitions of 100%. In total, 4320 individuals from 17 studies across 10 countries were included, where 1738 (40.2%) had one of the 24 confirmed G6PD mutations, and 61 observations (3.5%) were identified as outliers. The median activity of the hemi-/homozygotes with A-(c.202G>A/c.376A>G) was 29.0% (range: 1.7% to 76.6%), 10.2% (range: 0.0% to 32.5%) for Mahidol, 16.9% (range 3.3% to 21.3%) for Mediterranean, 9.0% (range: 2.9% to 23.2%) for Vanua Lava, and 7.5% (range: 0.0% to 18.3%) for Viangchan. The median activity in heterozygotes was 72.1% (range: 16.4% to 127.1%) for A-(c.202G>A/c.376A>G), 54.5% (range: 0.0% to 112.8%) for Mahidol, 37.9% (range: 20.7% to 80.5%) for Mediterranean, 53.8% (range: 10.9% to 82.5%) for Vanua Lava, and 52.3% (range: 4.8% to 78.6%) for Viangchan. A total of 99.5% of hemi/homozygotes with the Mahidol mutation and 100% of those with the Mediterranean, Vanua Lava, and Viangchan mutations had <30% activity. For A-(c.202G>A/c.376A>G), 55% of hemi/homozygotes had <30% activity. The G6PD activity for each variant spanned the current classification thresholds used to define clinically relevant categories of enzymatic deficiency.

2.
Spat Spatiotemporal Epidemiol ; 41: 100357, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35691633

RESUMO

Maps of disease burden are a core tool needed for the control and elimination of malaria. Reliable routine surveillance data of malaria incidence, typically aggregated to administrative units, is becoming more widely available. Disaggregation regression is an important model framework for estimating high resolution risk maps from aggregated data. However, the aggregation of incidence over large, heterogeneous areas means that these data are underpowered for estimating complex, non-linear models. In contrast, prevalence point-surveys are directly linked to local environmental conditions but are not common in many areas of the world. Here, we train multiple non-linear, machine learning models on Plasmodium falciparum prevalence point-surveys. We then ensemble the predictions from these machine learning models with a disaggregation regression model that uses aggregated malaria incidences as response data. We find that using a disaggregation regression model to combine predictions from machine learning models improves model accuracy relative to a baseline model.


Assuntos
Malária Falciparum , Malária , Humanos , Incidência , Malária/epidemiologia , Malária Falciparum/epidemiologia , Dinâmica não Linear , Prevalência
3.
PLoS Negl Trop Dis ; 16(2): e0010174, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176015

RESUMO

BACKGROUND: The introduction of novel short course treatment regimens for the radical cure of Plasmodium vivax requires reliable point-of-care diagnosis that can identify glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. While deficient males can be identified using a qualitative diagnostic test, the genetic make-up of females requires a quantitative measurement. SD Biosensor (Republic of Korea) has developed a handheld quantitative G6PD diagnostic (STANDARD G6PD test), that has approximately 90% accuracy in field studies for identifying individuals with intermediate or severe deficiency. The device can only be considered for routine care if precision of the assay is high. METHODS AND FINDINGS: Commercial lyophilised controls (ACS Analytics, USA) with high, intermediate, and low G6PD activities were assessed 20 times on 10 Biosensor devices and compared to spectrophotometry (Pointe Scientific, USA). Each device was then dispatched to one of 10 different laboratories with a standard set of the controls. Each control was tested 40 times at each laboratory by a single user and compared to spectrophotometry results. When tested at one site, the mean coefficient of variation (CV) was 0.111, 0.172 and 0.260 for high, intermediate, and low controls across all devices respectively; combined G6PD Biosensor readings correlated well with spectrophotometry (rs = 0.859, p<0.001). When tested in different laboratories, correlation was lower (rs = 0.604, p<0.001) and G6PD activity determined by Biosensor for the low and intermediate controls overlapped. The use of lyophilised human blood samples rather than fresh blood may have affected these findings. Biosensor G6PD readings between sites did not differ significantly (p = 0.436), whereas spectrophotometry readings differed markedly between sites (p<0.001). CONCLUSIONS: Repeatability and inter-laboratory reproducibility of the Biosensor were good; though the device did not reliably discriminate between intermediate and low G6PD activities of the lyophilized specimens. Clinical studies are now required to assess the devices performance in practice.


Assuntos
Técnicas Biossensoriais/normas , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Glucosefosfato Desidrogenase/sangue , Feminino , Liofilização , Deficiência de Glucosefosfato Desidrogenase/sangue , Humanos , Testes Imediatos/normas , Reprodutibilidade dos Testes , Espectrofotometria
4.
PLoS Med ; 18(6): e1003614, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061843

RESUMO

BACKGROUND: In 2017, an estimated 14 million cases of Plasmodium vivax malaria were reported from Asia, Central and South America, and the Horn of Africa. The clinical burden of vivax malaria is largely driven by its ability to form dormant liver stages (hypnozoites) that can reactivate to cause recurrent episodes of malaria. Elimination of both the blood and liver stages of the parasites ("radical cure") is required to achieve a sustained clinical response and prevent ongoing transmission of the parasite. Novel treatment options and point-of-care diagnostics are now available to ensure that radical cure can be administered safely and effectively. We quantified the global economic cost of vivax malaria and estimated the potential cost benefit of a policy of radical cure after testing patients for glucose-6-phosphate dehydrogenase (G6PD) deficiency. METHODS AND FINDINGS: Estimates of the healthcare provider and household costs due to vivax malaria were collated and combined with national case estimates for 44 endemic countries in 2017. These provider and household costs were compared with those that would be incurred under 2 scenarios for radical cure following G6PD screening: (1) complete adherence following daily supervised primaquine therapy and (2) unsupervised treatment with an assumed 40% effectiveness. A probabilistic sensitivity analysis generated credible intervals (CrIs) for the estimates. Globally, the annual cost of vivax malaria was US$359 million (95% CrI: US$222 to 563 million), attributable to 14.2 million cases of vivax malaria in 2017. From a societal perspective, adopting a policy of G6PD deficiency screening and supervision of primaquine to all eligible patients would prevent 6.1 million cases and reduce the global cost of vivax malaria to US$266 million (95% CrI: US$161 to 415 million), although healthcare provider costs would increase by US$39 million. If perfect adherence could be achieved with a single visit, then the global cost would fall further to US$225 million, equivalent to $135 million in cost savings from the baseline global costs. A policy of unsupervised primaquine reduced the cost to US$342 million (95% CrI: US$209 to 532 million) while preventing 2.1 million cases. Limitations of the study include partial availability of country-level cost data and parameter uncertainty for the proportion of patients prescribed primaquine, patient adherence to a full course of primaquine, and effectiveness of primaquine when unsupervised. CONCLUSIONS: Our modelling study highlights a substantial global economic burden of vivax malaria that could be reduced through investment in safe and effective radical cure achieved by routine screening for G6PD deficiency and supervision of treatment. Novel, low-cost interventions for improving adherence to primaquine to ensure effective radical cure and widespread access to screening for G6PD deficiency will be critical to achieving the timely global elimination of P. vivax.


Assuntos
Antimaláricos/economia , Antimaláricos/uso terapêutico , Custos de Medicamentos , Saúde Global/economia , Malária Vivax/tratamento farmacológico , Malária Vivax/economia , Primaquina/economia , Primaquina/uso terapêutico , Adolescente , Adulto , Antimaláricos/efeitos adversos , Criança , Pré-Escolar , Tomada de Decisão Clínica , Redução de Custos , Análise Custo-Benefício , Terapia Diretamente Observada , Feminino , Testes Genéticos/economia , Deficiência de Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/economia , Deficiência de Glucosefosfato Desidrogenase/genética , Gastos em Saúde , Hemólise/efeitos dos fármacos , Humanos , Incidência , Lactente , Recém-Nascido , Malária Vivax/epidemiologia , Masculino , Adesão à Medicação , Modelos Econômicos , Seleção de Pacientes , Primaquina/efeitos adversos , Indução de Remissão , Resultado do Tratamento , Adulto Jovem
5.
Front Pharmacol ; 12: 654054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959023

RESUMO

Plasmodium vivax is one of the five human malaria parasite species, which has a wide geographical distribution and can cause severe disease and fatal outcomes. It has the ability to relapse from dormant liver stages (hypnozoites), weeks to months after clearance of the acute blood-stage infection. An 8-aminoquinoline drug primaquine (PQ) can clear the hypnozoites, and thus can be used as an anti-relapse therapeutic agent. Recently, a number of studies have found that its efficacy is compromised by polymorphisms in the cytochrome P450 2D6 (CYP2D6) gene; decreased or absence of CYP2D6 activity contributes to PQ therapeutic failure. The present study sought to characterize CYP2D6 genetic variation in Madagascar, where populations originated from admixture between Asian and African populations, vivax malaria is endemic, and PQ can be deployed soon to achieve national malaria elimination. In a total of 211 samples collected from two health districts, CYP2D6 decreased function alleles CYP2D6*10, *17, *29, *36+*10, and *41 were observed at frequencies of 3.55-17.06%. In addition, nonfunctional alleles were observed, the most common of which were CYP2D6*4 (2.13%), *5 (1.66%), and the *4x2 gene duplication (1.42%). Given these frequencies, 34.6% of the individuals were predicted to be intermediate metabolizers (IM) with an enzyme activity score (AS) ≤ 1.0; both the IM phenotype and AS ≤ 1.0 have been found to be associated with PQ therapeutic failure. Furthermore, the allele and genotype frequency distributions add to the archaeological and genomic evidence of Malagasy populations constituting a unique, Asian-African admixed origin. The results from this exploratory study provide fresh insights about genomic characteristics that could affect the metabolism of PQ into its active state, and may enable optimization of PQ treatment across human genetic diversity, which is critical for achieving P. vivax elimination.

6.
Malar J ; 20(1): 217, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980257

RESUMO

BACKGROUND: The radical cure of Plasmodium vivax requires treatment with an 8-aminoquinoline drug, such as primaquine and tafenoquine, to eradicate liver hypnozoite stages, which can reactivate to cause relapsing infections. Safe treatment regimens require prior screening of patients for glucose-6-phosphate dehydrogenase (G6PD) deficiency to avoid potential life-threatening drug induced haemolysis. Testing is rarely available in malaria endemic countries, but will be needed to support routine use of radical cure. This study investigates end-user perspectives in Bangladesh on the introduction of a quantitative G6PD test (SD Biosensor STANDARD™ G6PD analyser) to support malaria elimination. METHODS: The perspectives of users on the SD Biosensor test were analysed using semi-structured interviews and focus group discussions with health care providers and malaria programme officers in Bangladesh. Key emerging themes regarding the feasibility of introducing this test into routine practice, including perceived barriers, were analysed. RESULTS: In total 63 participants were interviewed. Participants emphasized the life-saving potential of the biosensor, but raised concerns including the impact of limited staff time, high workload and some technical aspects of the device. Participants highlighted that there are both too few and too many P. vivax patients to implement G6PD testing owing to challenges of funding, workload and complex testing infrastructure. Implementing the biosensor would require flexibility and improvisation to deal with remote sites, overcoming a low index of suspicion and mutual interplay of declining patient numbers and reluctance to test. This approach would generate new forms of evidence to justify introduction in policy and carefully consider questions of deployment given declining patient numbers. CONCLUSIONS: The results of the study show that, in an elimination context, the importance of malaria needs to be maintained for both policy makers and the affected communities, in this case by ensuring P. vivax, PQ treatment, and G6PD deficiency remain visible. Availability of new technologies, such as the biosensor, will fuel ongoing debates about priorities for allocating resources that must be adapted to a constantly evolving target. Technical and logistical concerns regarding the biosensor should be addressed by future product designs, adequate training, strengthened supply chains, and careful planning of communication, advocacy and staff interactions at all health system levels.


Assuntos
Testes Diagnósticos de Rotina/estatística & dados numéricos , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Pessoal de Saúde/estatística & dados numéricos , Malária Vivax/diagnóstico , Bangladesh , Testes Diagnósticos de Rotina/psicologia , Pessoal de Saúde/psicologia , Humanos
7.
Sci Rep ; 10(1): 18129, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093622

RESUMO

Malaria transmission in Madagascar is highly heterogeneous, exhibiting spatial, seasonal and long-term trends. Previous efforts to map malaria risk in Madagascar used prevalence data from Malaria Indicator Surveys. These cross-sectional surveys, conducted during the high transmission season most recently in 2013 and 2016, provide nationally representative prevalence data but cover relatively short time frames. Conversely, monthly case data are collected at health facilities but suffer from biases, including incomplete reporting and low rates of treatment seeking. We combined survey and case data to make monthly maps of prevalence between 2013 and 2016. Health facility catchment populations were estimated to produce incidence rates from the case data. Smoothed incidence surfaces, environmental and socioeconomic covariates, and survey data informed a Bayesian prevalence model, in which a flexible incidence-to-prevalence relationship was learned. Modelled spatial trends were consistent over time, with highest prevalence in the coastal regions and low prevalence in the highlands and desert south. Prevalence was lowest in 2014 and peaked in 2015 and seasonality was widely observed, including in some lower transmission regions. These trends highlight the utility of monthly prevalence estimates over the four year period. By combining survey and case data using this two-step modelling approach, we were able to take advantage of the relative strengths of each metric while accounting for potential bias in the case data. Similar modelling approaches combining large datasets of different malaria metrics may be applicable across sub-Saharan Africa.


Assuntos
Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum/isolamento & purificação , Vigilância da População , Análise Espaço-Temporal , Teorema de Bayes , Estudos Transversais , Inquéritos Epidemiológicos , Humanos , Madagáscar/epidemiologia , Malária Falciparum/parasitologia , Prevalência
9.
Am J Trop Med Hyg ; 103(1): 394-403, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32372747

RESUMO

Tafenoquine has been licensed for the single-dose radical cure of Plasmodium vivax in adults; however, it is only recommended in patients with > 70% of normal glucose-6-phosphate dehydrogenase (G6PD) activity. Because this may hinder widespread use, we investigated sex-based treatment strategies in which all adult patients are tested with a qualitative G6PD rapid diagnostic test (RDT). Glucose-6-phosphate dehydrogenase normal males are prescribed tafenoquine in all three strategies, whereas G6PD normal females are prescribed either a low-dose 14-day primaquine regimen (PQ14, total dose 3.5 mg/kg) or a high-dose 7-day primaquine regimen (PQ7, total dose 7 mg/kg), or referred to a healthcare facility for quantitative G6PD testing before prescribing tafenoquine. Patients testing G6PD deficient are prescribed a weekly course of primaquine for 8 weeks. We compared the cost-effectiveness of these three strategies to usual care in four countries using a decision tree model. Usual care in Ethiopia does not include radical cure, whereas Afghanistan, Indonesia, and Vietnam prescribe PQ14 without G6PD screening. The cost per disability-adjusted life-year (DALY) averted was expressed through incremental cost-effectiveness ratios (ICERs). Compared with usual care, the ICERs for a sex-based treatment strategy with PQ7 for females from a healthcare provider perspective were $127 per DALY averted in Vietnam, $466 in Ethiopia, $1,089 in Afghanistan, and $4,443 in Indonesia. The PQ14 and referral options cost more while averting fewer DALYs than PQ7. This study provides an alternative cost-effective mode of rolling out tafenoquine in areas where initial testing with only a G6PD RDT is feasible.


Assuntos
Aminoquinolinas/efeitos adversos , Anemia Hemolítica/induzido quimicamente , Antimaláricos/efeitos adversos , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Malária Vivax/tratamento farmacológico , Primaquina/efeitos adversos , Adulto , Afeganistão , Aminoquinolinas/administração & dosagem , Anemia Hemolítica/etiologia , Antimaláricos/administração & dosagem , Cloroquina/administração & dosagem , Análise Custo-Benefício , Etiópia , Feminino , Deficiência de Glucosefosfato Desidrogenase/complicações , Hemizigoto , Heterozigoto , Homozigoto , Humanos , Indonésia , Masculino , Programas de Rastreamento , Adesão à Medicação , Plasmodium vivax , Primaquina/administração & dosagem , Anos de Vida Ajustados por Qualidade de Vida , Recidiva , Fatores Sexuais , Vietnã
10.
PLoS Med ; 17(5): e1003084, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32407380

RESUMO

BACKGROUND: The radical cure of Plasmodium vivax and P. ovale requires treatment with primaquine or tafenoquine to clear dormant liver stages. Either drug can induce haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, necessitating screening. The reference diagnostic method for G6PD activity is ultraviolet (UV) spectrophotometry; however, a universal G6PD activity threshold above which these drugs can be safely administered is not yet defined. Our study aimed to quantify assay-based variation in G6PD spectrophotometry and to explore the diagnostic implications of applying a universal threshold. METHODS AND FINDINGS: Individual-level data were pooled from studies that used G6PD spectrophotometry. Studies were identified via PubMed search (25 April 2018) and unpublished contributions from contacted authors (PROSPERO: CRD42019121414). Studies were excluded if they assessed only individuals with known haematological conditions, were family studies, or had insufficient details. Studies of malaria patients were included but analysed separately. Included studies were assessed for risk of bias using an adapted form of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Repeatability and intra- and interlaboratory variability in G6PD activity measurements were compared between studies and pooled across the dataset. A universal threshold for G6PD deficiency was derived, and its diagnostic performance was compared to site-specific thresholds. Study participants (n = 15,811) were aged between 0 and 86 years, and 44.4% (7,083) were women. Median (range) activity of G6PD normal (G6PDn) control samples was 10.0 U/g Hb (6.3-14.0) for the Trinity assay and 8.3 U/g Hb (6.8-15.6) for the Randox assay. G6PD activity distributions varied significantly between studies. For the 13 studies that used the Trinity assay, the adjusted male median (AMM; a standardised metric of 100% G6PD activity) varied from 5.7 to 12.6 U/g Hb (p < 0.001). Assay precision varied between laboratories, as assessed by variance in control measurements (from 0.1 to 1.5 U/g Hb; p < 0.001) and study-wise mean coefficient of variation (CV) of replicate measures (from 1.6% to 14.9%; p < 0.001). A universal threshold of 100% G6PD activity was defined as 9.4 U/g Hb, yielding diagnostic thresholds of 6.6 U/g Hb (70% activity) and 2.8 U/g Hb (30% activity). These thresholds diagnosed individuals with less than 30% G6PD activity with study-wise sensitivity from 89% (95% CI: 81%-94%) to 100% (95% CI: 96%-100%) and specificity from 96% (95% CI: 89%-99%) to 100% (100%-100%). However, when considering intermediate deficiency (<70% G6PD activity), sensitivity fell to a minimum of 64% (95% CI: 52%-75%) and specificity to 35% (95% CI: 24%-46%). Our ability to identify underlying factors associated with study-level heterogeneity was limited by the lack of availability of covariate data and diverse study contexts and methodologies. CONCLUSIONS: Our findings indicate that there is substantial variation in G6PD measurements by spectrophotometry between sites. This is likely due to variability in laboratory methods, with possible contribution of unmeasured population factors. While an assay-specific, universal quantitative threshold offers robust diagnosis at the 30% level, inter-study variability impedes performance of universal thresholds at the 70% level. Caution is advised in comparing findings based on absolute G6PD activity measurements across studies. Novel handheld quantitative G6PD diagnostics may allow greater standardisation in the future.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Espectrofotometria , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimaláricos/uso terapêutico , Criança , Pré-Escolar , Feminino , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Malária/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
BMC Med ; 18(1): 26, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32036785

RESUMO

BACKGROUND: Many malaria-endemic areas experience seasonal fluctuations in case incidence as Anopheles mosquito and Plasmodium parasite life cycles respond to changing environmental conditions. Identifying location-specific seasonality characteristics is useful for planning interventions. While most existing maps of malaria seasonality use fixed thresholds of rainfall, temperature, and/or vegetation indices to identify suitable transmission months, we construct a statistical modelling framework for characterising the seasonal patterns derived directly from monthly health facility data. METHODS: With data from 2669 of the 3247 health facilities in Madagascar, a spatiotemporal regression model was used to estimate seasonal patterns across the island. In the absence of catchment population estimates or the ability to aggregate to the district level, this focused on the monthly proportions of total annual cases by health facility level. The model was informed by dynamic environmental covariates known to directly influence seasonal malaria trends. To identify operationally relevant characteristics such as the transmission start months and associated uncertainty measures, an algorithm was developed and applied to model realisations. A seasonality index was used to incorporate burden information from household prevalence surveys and summarise 'how seasonal' locations are relative to their surroundings. RESULTS: Positive associations were detected between monthly case proportions and temporally lagged covariates of rainfall and temperature suitability. Consistent with the existing literature, model estimates indicate that while most parts of Madagascar experience peaks in malaria transmission near March-April, the eastern coast experiences an earlier peak around February. Transmission was estimated to start in southeast districts before southwest districts, suggesting that indoor residual spraying should be completed in the same order. In regions where the data suggested conflicting seasonal signals or two transmission seasons, estimates of seasonal features had larger deviations and therefore less certainty. CONCLUSIONS: Monthly health facility data can be used to establish seasonal patterns in malaria burden and augment the information provided by household prevalence surveys. The proposed modelling framework allows for evidence-based and cohesive inferences on location-specific seasonal characteristics. As health surveillance systems continue to improve, it is hoped that more of such data will be available to improve our understanding and planning of intervention strategies.


Assuntos
Instalações de Saúde/estatística & dados numéricos , Malária/epidemiologia , Análise de Dados , Humanos , Incidência , Madagáscar , Estações do Ano
13.
PLoS Negl Trop Dis ; 13(7): e0007176, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31276491

RESUMO

BACKGROUND: The Madagascar National Strategic Plan for Malaria Control 2018 (NSP) outlines malaria control pre-elimination strategies that include detailed goals for mosquito control. Primary surveillance protocols and mosquito control interventions focus on indoor vectors of malaria, while many potential vectors feed and rest outdoors. Here we describe the application of tools that advance our understanding of diversity, host choice, and Plasmodium infection in the Anopheline mosquitoes of the Western Highland Fringe of Madagascar. METHODOLOGY/PRINCIPAL FINDINGS: We employed a modified barrier screen trap, the QUadrant Enabled Screen Trap (QUEST), in conjunction with the recently developed multiplex BLOOdmeal Detection Assay for Regional Transmission (BLOODART). We captured a total of 1252 female Anopheles mosquitoes (10 species), all of which were subjected to BLOODART analysis. QUEST collection captured a heterogenous distribution of mosquito density, diversity, host choice, and Plasmodium infection. Concordance between Anopheles morphology and BLOODART species identifications ranged from 93-99%. Mosquito feeding behavior in this collection frequently exhibited multiple blood meal hosts (single host = 53.6%, two hosts = 42.1%, three hosts = 4.3%). The overall percentage of human positive bloodmeals increased between the December 2017 and the April 2018 timepoints (27% to 44%). Plasmodium positivity was frequently observed in the abdomens of vectors considered to be of secondary importance, with an overall prevalence of 6%. CONCLUSIONS/SIGNIFICANCE: The QUEST was an efficient tool for sampling exophilic Anopheline mosquitoes. Vectors considered to be of secondary importance were commonly found with Plasmodium DNA in their abdomens, indicating a need to account for these species in routine surveillance efforts. Mosquitoes exhibited multiple blood feeding behavior within a gonotrophic cycle, with predominantly non-human hosts in the bloodmeal. Taken together, this complex feeding behavior could enhance the role of multiple Anopheline species in malaria transmission, possibly tempered by zoophilic feeding tendencies.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Comportamento Alimentar , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Sangue , Vetores de Doenças , Monitoramento Epidemiológico , Feminino , Interações Hospedeiro-Parasita , Humanos , Madagáscar , Malária/transmissão , Plasmodium/fisiologia
14.
Lancet ; 394(10195): 332-343, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31229233

RESUMO

BACKGROUND: Plasmodium vivax exacts a significant toll on health worldwide, yet few efforts to date have quantified the extent and temporal trends of its global distribution. Given the challenges associated with the proper diagnosis and treatment of P vivax, national malaria programmes-particularly those pursuing malaria elimination strategies-require up to date assessments of P vivax endemicity and disease impact. This study presents the first global maps of P vivax clinical burden from 2000 to 2017. METHODS: In this spatial and temporal modelling study, we adjusted routine malariometric surveillance data for known biases and used socioeconomic indicators to generate time series of the clinical burden of P vivax. These data informed Bayesian geospatial models, which produced fine-scale predictions of P vivax clinical incidence and infection prevalence over time. Within sub-Saharan Africa, where routine surveillance for P vivax is not standard practice, we combined predicted surfaces of Plasmodium falciparum with country-specific ratios of P vivax to P falciparum. These results were combined with surveillance-based outputs outside of Africa to generate global maps. FINDINGS: We present the first high-resolution maps of P vivax burden. These results are combined with those for P falciparum (published separately) to form the malaria estimates for the Global Burden of Disease 2017 study. The burden of P vivax malaria decreased by 41·6%, from 24·5 million cases (95% uncertainty interval 22·5-27·0) in 2000 to 14·3 million cases (13·7-15·0) in 2017. The Americas had a reduction of 56·8% (47·6-67·0) in total cases since 2000, while South-East Asia recorded declines of 50·5% (50·3-50·6) and the Western Pacific regions recorded declines of 51·3% (48·0-55·4). Europe achieved zero P vivax cases during the study period. Nonetheless, rates of decline have stalled in the past five years for many countries, with particular increases noted in regions affected by political and economic instability. INTERPRETATION: Our study highlights important spatial and temporal patterns in the clinical burden and prevalence of P vivax. Amid substantial progress worldwide, plateauing gains and areas of increased burden signal the potential for challenges that are greater than expected on the road to malaria elimination. These results support global monitoring systems and can inform the optimisation of diagnosis and treatment where P vivax has most impact. FUNDING: Bill & Melinda Gates Foundation and the Wellcome Trust.


Assuntos
Doenças Endêmicas/estatística & dados numéricos , Malária Vivax/epidemiologia , África/epidemiologia , América/epidemiologia , Sudeste Asiático/epidemiologia , Teorema de Bayes , Saúde Global , Humanos , Oceania/epidemiologia , Vigilância da População , Análise Espaço-Temporal
15.
Lancet ; 394(10195): 322-331, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31229234

RESUMO

BACKGROUND: Since 2000, the scale-up of malaria control interventions has substantially reduced morbidity and mortality caused by the disease globally, fuelling bold aims for disease elimination. In tandem with increased availability of geospatially resolved data, malaria control programmes increasingly use high-resolution maps to characterise spatially heterogeneous patterns of disease risk and thus efficiently target areas of high burden. METHODS: We updated and refined the Plasmodium falciparum parasite rate and clinical incidence models for sub-Saharan Africa, which rely on cross-sectional survey data for parasite rate and intervention coverage. For malaria endemic countries outside of sub-Saharan Africa, we produced estimates of parasite rate and incidence by applying an ecological downscaling approach to malaria incidence data acquired via routine surveillance. Mortality estimates were derived by linking incidence to systematically derived vital registration and verbal autopsy data. Informed by high-resolution covariate surfaces, we estimated P falciparum parasite rate, clinical incidence, and mortality at national, subnational, and 5 × 5 km pixel scales with corresponding uncertainty metrics. FINDINGS: We present the first global, high-resolution map of P falciparum malaria mortality and the first global prevalence and incidence maps since 2010. These results are combined with those for Plasmodium vivax (published separately) to form the malaria estimates for the Global Burden of Disease 2017 study. The P falciparum estimates span the period 2000-17, and illustrate the rapid decline in burden between 2005 and 2017, with incidence declining by 27·9% and mortality declining by 42·5%. Despite a growing population in endemic regions, P falciparum cases declined between 2005 and 2017, from 232·3 million (95% uncertainty interval 198·8-277·7) to 193·9 million (156·6-240·2) and deaths declined from 925 800 (596 900-1 341 100) to 618 700 (368 600-952 200). Despite the declines in burden, 90·1% of people within sub-Saharan Africa continue to reside in endemic areas, and this region accounted for 79·4% of cases and 87·6% of deaths in 2017. INTERPRETATION: High-resolution maps of P falciparum provide a contemporary resource for informing global policy and malaria control planning, programme implementation, and monitoring initiatives. Amid progress in reducing global malaria burden, areas where incidence trends have plateaued or increased in the past 5 years underscore the fragility of hard-won gains against malaria. Efforts towards elimination should be strengthened in such areas, and those where burden remained high throughout the study period. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Malária Falciparum/epidemiologia , Mortalidade/tendências , África Subsaariana/epidemiologia , Estudos Transversais , Saúde Global , Humanos , Incidência , Malária Falciparum/mortalidade , Objetivos Organizacionais , Prevalência , Análise Espaço-Temporal
16.
Am J Trop Med Hyg ; 100(5): 1196-1201, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30834883

RESUMO

Current malaria rapid diagnostic tests (RDTs) contain antibodies against Plasmodium falciparum-specific histidine-rich protein 2 (PfHRP2), Plasmodium lactate dehydrogenase (pLDH), and aldolase in various combinations. Low or high parasite densities/target antigen concentrations may influence the accuracy and sensitivity of PfHRP2-detecting RDTs. We analyzed the SD Bioline Malaria Ag P.f/Pan RDT performance in relation to P. falciparum parasitemia in Madagascar, where clinical Plasmodium vivax malaria exists alongside P. falciparum. Nine hundred sixty-three samples from patients seeking care for suspected malaria infection were analyzed by RDT, microscopy, and Plasmodium species-specific, ligase detection reaction-fluorescent microsphere assay (LDR-FMA). Plasmodium infection positivity by these diagnostics was 47.9%, 46.9%, and 58%, respectively. Plasmodium falciparum-only infections were predominant (microscopy, 45.7%; LDR-FMA, 52.3%). In all, 16.3% of P. falciparum, 70% of P. vivax, and all of Plasmodium malariae, Plasmodium ovale, and mixed-species infections were submicroscopic. In 423 P. falciparum mono-infections, confirmed by microscopy and LDR-FMA, the parasitemia in those who were positive for both the PfHRP2 and pan-pLDH test bands was significantly higher than that in those who were positive only for the PfHRP2 band (P < 0.0001). Plasmodium falciparum parasitemia in those that were detected as P. falciparum-only infections by microscopy but P. falciparum mixed infections by LDR-FMA also showed similar outcome by the RDT band positivity. In addition, we used varying parasitemia (3-0.0001%) of the laboratory-maintained 3D7 strain to validate this observation. A positive pLDH band in high P. falciparum-parasitemic individuals may complicate diagnosis and treatment, particularly when the microscopy is inconclusive for P. vivax, and the two infections require different treatments.


Assuntos
Antígenos de Protozoários/análise , Testes Diagnósticos de Rotina/normas , L-Lactato Desidrogenase/análise , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Parasitemia/diagnóstico , Proteínas de Protozoários/análise , Antígenos de Protozoários/imunologia , Frutose-Bifosfato Aldolase/análise , Frutose-Bifosfato Aldolase/imunologia , Humanos , L-Lactato Desidrogenase/imunologia , Madagáscar , Microscopia , Plasmodium falciparum/enzimologia , Plasmodium vivax , Proteínas de Protozoários/imunologia , Sensibilidade e Especificidade
17.
Malar J ; 18(1): 90, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902070

RESUMO

The Demographic and Health Surveys (DHS) Program has supported three household Malaria Indicator Surveys (MIS) in Madagascar. The results of 13 key malaria indicators from these surveys have been mapped as continuous surfaces using model-based geostatistical methods. The opportunities and limitations of these mapped outputs were discussed during a workshop in Antananarivo, Madagascar in July 2018, attended by 15 representatives from various implementation, policy and research stakeholder institutions in Madagascar. Participants evaluated the findings from the maps, using these to develop figures and narratives to support their work in the control of malaria in Madagascar.


Assuntos
Malária/prevenção & controle , Participação dos Interessados , Humanos , Madagáscar , Inquéritos e Questionários
18.
PLoS Negl Trop Dis ; 13(1): e0007140, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703083

RESUMO

Effective malaria control strategies require an accurate understanding of the epidemiology of locally transmitted Plasmodium species. Compared to Plasmodium falciparum infection, Plasmodium vivax has a lower asexual parasitaemia, forms dormant liver-stages (hypnozoites), and is more transmissible. Hence, treatment and diagnostic policies aimed exclusively at P. falciparum are far less efficient against endemic P. vivax. Within sub-Saharan Africa, malaria control programmes justly focus on reducing the morbidity and mortality associated with P. falciparum. However, the recent emphasis on malaria elimination and increased accessibility of more sensitive diagnostic tools have revealed greater intricacies in malaria epidemiology across the continent. Since 2010, the number of studies identifying P. vivax endemic to Africa has expanded considerably, with 88 new scientific reports published since a review of evidence in 2015, approximately doubling the available data. There is evidence of P. vivax in all regions of Africa, apparent from infected vectors, clinical cases, serological indicators, parasite prevalence, exported infections, and P. vivax-infected Duffy-negative individuals. Where the prevalence of microscopic parasitaemia is low, a greater proportion of P. vivax infections were observed relative to P. falciparum. This evidence highlights an underlying widespread presence of P. vivax across all malaria-endemic regions of Africa, further complicating the current practical understanding of malaria epidemiology in this region. Thus, ultimate elimination of malaria in Africa will require national malaria control programmes to adopt policy and practice aimed at all human species of malaria.


Assuntos
Doenças Endêmicas , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium vivax/isolamento & purificação , África/epidemiologia , Sistema do Grupo Sanguíneo Duffy/sangue , Humanos , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Malária Vivax/prevenção & controle , Malária Vivax/transmissão , Razão de Chances , Parasitemia/sangue , Parasitemia/epidemiologia , Parasitemia/prevenção & controle , Parasitemia/transmissão , Plasmodium falciparum/isolamento & purificação , Prevalência
19.
Malar J ; 17(1): 352, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290815

RESUMO

BACKGROUND: The Malaria Atlas Project (MAP) has worked to assemble and maintain a global open-access database of spatial malariometric data for over a decade. This data spans various formats and topics, including: geo-located surveys of malaria parasite rate; global administrative boundary shapefiles; and global and regional rasters representing the distribution of malaria and associated illnesses, blood disorders, and intervention coverage. MAP has recently released malariaAtlas, an R package providing a direct interface to MAP's routinely-updated malariometric databases and research outputs. METHODS AND RESULTS: The current paper reviews the functionality available in malariaAtlas and highlights its utility for spatial epidemiological analysis of malaria. malariaAtlas enables users to freely download, visualise and analyse global malariometric data within R. Currently available data types include: malaria parasite rate and vector occurrence point data; subnational administrative boundary shapefiles; and a large suite of rasters covering a diverse range of metrics related to malaria research. malariaAtlas is here used in two mock analyses to illustrate how this data may be incorporated into a standard R workflow for spatial analysis. CONCLUSIONS: malariaAtlas is the first open-access R-interface to malariometric data, providing a new and reproducible means of accessing such data within a freely available and commonly used statistical software environment. In this way, the malariaAtlas package aims to contribute to the environment of data-sharing within the malaria research community.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Bases de Dados Factuais , Malária/epidemiologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/parasitologia , Software , Distribuição Animal , Animais , Humanos , Incidência , Malária/parasitologia , Prevalência
20.
Am J Trop Med Hyg ; 99(4): 995-1002, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30182923

RESUMO

Community prevalence of infection is a widely used, standardized metric for evaluating malaria endemicity. Conventional methods for measuring prevalence include light microscopy and rapid diagnostic tests (RDTs), but their detection thresholds are inadequate for diagnosing low-density infections. The significance of submicroscopic malaria infections is poorly understood in Madagascar, a country of heterogeneous malaria epidemiology. A cross-sectional community survey in the western foothills of Madagascar during the March 2014 transmission season found malaria infection to be predominantly submicroscopic and asymptomatic. Prevalence of Plasmodium infection diagnosed by microscopy, RDT, and molecular diagnosis was 2.4%, 4.1%, and 13.8%, respectively. This diagnostic discordance was greatest for Plasmodium vivax infection, which was 98.5% submicroscopic. Village location, insecticide-treated bednet ownership, and fever were significantly associated with infection outcomes, as was presence of another infected individual in the household. Duffy-negative individuals were diagnosed with P. vivax, but with reduced odds relative to Duffy-positive hosts. The observation of high proportions of submicroscopic infections calls for a wider assessment of the parasite reservoir in other regions of the island, particularly given the country's current focus on malaria elimination and the poorly documented distribution of the non-P. falciparum parasite species.


Assuntos
Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Adolescente , Adulto , Doenças Assintomáticas , Criança , Pré-Escolar , Estudos Transversais , Sistema do Grupo Sanguíneo Duffy/genética , Feminino , Expressão Gênica , Inquéritos Epidemiológicos , Humanos , Lactente , Madagáscar/epidemiologia , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Masculino , Microscopia , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/classificação , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase , Prevalência , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Fatores de Risco , População Rural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA