Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2316006121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748577

RESUMO

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/ß-catenin signaling and inhibition of the TGF-ß pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/ß-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Barreira Hematoencefálica/metabolismo , Humanos , Células Endoteliais/metabolismo , Animais , Via de Sinalização Wnt , Claudina-5/metabolismo , Claudina-5/genética , AMP Cíclico/metabolismo , Camundongos , Células-Tronco/metabolismo , Células-Tronco/citologia , Junções Íntimas/metabolismo , beta Catenina/metabolismo
2.
Fluids Barriers CNS ; 20(1): 15, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882782

RESUMO

BACKGROUND: Hypertriglyceridemia is closely linked to atherosclerosis related inflammatory processes and blood-brain barrier (BBB) dysfunction. Using apolipoprotein B-100 (APOB-100) transgenic mice, an animal model of chronic hypertriglyceridemia, we analyzed BBB function and morphology in vitro and ex vivo. Our objective was to determine which BBB characteristics are produced mainly by interleukin (IL)-6, an atherosclerosis promoting cytokine, and whether these actions can be antagonized by IL-10, an anti-inflammatory cytokine. METHODS: Brain endothelial and glial cell cultures and brain microvessels were isolated from wild type (WT) and APOB-100 transgenic mice and were treated with IL-6, IL-10 and their combination. First, IL-6 and IL-10 production was measured in WT and APOB-100 microvessels using qPCR. Then functional parameters of endothelial cell cultures were analyzed and immunocytochemistry for key BBB proteins was performed. RESULTS: IL-6 mRNA levels were higher in brain microvessels than in brain parenchyma of APOB-100 transgenic mice. Transendothelial electric resistance and P-glycoprotein activity were lower, and paracellular permeability was higher in cultured APOB-100 brain endothelial cells. These features were sensitive to both IL-6 and IL-10 treatments. A decreased P-glycoprotein immunostaining was measured in transgenic endothelial cells under control conditions and in WT cells after treating them with IL-6. This effect was antagonized by IL-10. Changes in immunostaining for tight junction proteins were observed after IL-6 exposure, which were in part antagonized by IL-10. In glial cell cultures an increase in aquaporin-4 immunolabeling in the transgenic group and an increase in microglia cell density in WT glia cultures was detected after IL-6 treatment, which was antagonized by IL-10. In isolated brain microvessels a decrease in P-glycoprotein immunolabeled area fraction was measured in APOB-100 microvessels under control conditions and in WT microvessels after every cytokine treatment. ZO-1 immunolabeling showed characteristics similar to that of P-glycoprotein. No change was seen in claudin-5 and occludin immunoreactive area fractions in microvessels. A decrease in aquaporin-4 immunoreactivity was measured in WT microvessels treated by IL-6, which was antagonized by IL-10. CONCLUSION: IL-6 produced in microvessels contributes to BBB impairment observed in the APOB-100 mice. We showed that IL-10 partly antagonizes the effects of IL-6 at the BBB.


Assuntos
Aterosclerose , Hipertrigliceridemia , Animais , Camundongos , Interleucina-6 , Interleucina-10 , Barreira Hematoencefálica , Apolipoproteína B-100 , Células Endoteliais , Citocinas , Camundongos Transgênicos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Aquaporina 4
3.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012212

RESUMO

Estrogens regulate a variety of neuroendocrine, reproductive and also non-reproductive brain functions. Estradiol biosynthesis in the central nervous system (CNS) is catalyzed by the enzyme aromatase, which is expressed in several brain regions by neurons, astrocytes and microglia. In this study, we performed a complex fluorescent immunocytochemical analysis which revealed that aromatase is colocalized with the nuclear stain in glial fibrillary acidic protein (GFAP) positive astrocytes in cell cultures. Confocal immunofluorescent Z-stack scanning analysis confirmed the colocalization of aromatase with the nuclear DAPI signal. Nuclear aromatase was also detectable in the S100ß positive astrocyte subpopulation. When the nuclear aromatase signal was present, estrogen receptor alpha was also abundant in the nucleus. Immunostaining of frozen brain tissue sections showed that the nuclear colocalization of the enzyme in GFAP-positive astrocytes is also detectable in the adult rat brain. CD11b/c labelled microglial cells express aromatase, but the immunopositive signal was distributed only in the cytoplasm both in the ramified and amoeboid microglial forms. Immunostaining of rat ovarian tissue sections and human granulosa cells revealed that aromatase was present only in the cytoplasm. This novel observation suggests a new unique mechanism in astrocytes that may regulate certain CNS functions via estradiol production.


Assuntos
Aromatase , Astrócitos , Animais , Aromatase/metabolismo , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Estradiol/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Neurônios/metabolismo , Ratos
4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638919

RESUMO

Several clinical studies indicate that smoking predisposes its consumers to esophageal inflammatory and malignant diseases, but the cellular mechanism is not clear. Ion transporters protect esophageal epithelial cells by maintaining intracellular pH at normal levels. In this study, we hypothesized that smoking affects the function of ion transporters, thus playing a role in the development of smoking-induced esophageal diseases. Esophageal cell lines were treated with cigarettesmoke extract (CSE), and the viability and proliferation of the cells, as well as the activity, mRNA and protein expression of the Na+/H+ exchanger-1 (NHE-1), were studied. NHE-1 expression was also investigated in human samples. For chronic treatment, guinea pigs were exposed to tobacco smoke, and NHE-1 activity was measured. Silencing of NHE-1 was performed by using specific siRNA. CSE treatment increased the activity and protein expression of NHE-1 in the metaplastic cells and decreased the rate of proliferation in a NHE-1-dependent manner. In contrast, CSE increased the proliferation of dysplastic cells independently of NHE-1. In the normal cells, the expression and activity of NHE-1 decreased due to in vitro and in vivo smoke exposure. Smoking enhances the function of NHE-1 in Barrett's esophagus, and this is presumably a compensatory mechanism against this toxic agent.


Assuntos
Esôfago de Barrett/genética , Proliferação de Células/genética , Esôfago/metabolismo , Interferência de RNA , Fumaça , Trocador 1 de Sódio-Hidrogênio/genética , Animais , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/metabolismo , Esôfago/patologia , Expressão Gênica , Cobaias , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Fumar , Trocador 1 de Sódio-Hidrogênio/metabolismo , Nicotiana/química
5.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810299

RESUMO

Rosuvastatin (RST) is primarily used to treat high cholesterol levels. As it has potentially harmful but not well-documented effects on embryos, RST is contraindicated during pregnancy. To demonstrate whether RST could induce molecular epigenetic events in the brains of newborn rats, pregnant mothers were treated daily with oral RST from the 11th day of pregnancy for 10 days (or until delivery). On postnatal day 1, the brains of the control and RST-treated rats were removed for Western blot or immunohistochemical analyses. Several antibodies that recognize different methylation sites for H2A, H2B, H3, and H4 histones were quantified. Analyses of cell-type-specific markers in the newborn brains demonstrated that prenatal RST administration did not affect the composition and cell type ratios as compared to the controls. Prenatal RST administration did, however, induce a general, nonsignificant increase in H2AK118me1, H2BK5me1, H3, H3K9me3, H3K27me3, H3K36me2, H4, H4K20me2, and H4K20me3 levels, compared to the controls. Moreover, significant changes were detected in the number of H3K4me1 and H3K4me3 sites (134.3% ± 19.2% and 127.8% ± 8.5% of the controls, respectively), which are generally recognized as transcriptional activators. Fluorescent/confocal immunohistochemistry for cell-type-specific markers and histone methylation marks on tissue sections indicated that most of the increase at these sites belonged to neuronal cell nuclei. Thus, prenatal RST treatment induces epigenetic changes that could affect neuronal differentiation and development.


Assuntos
Anticolesterolemiantes/efeitos adversos , Encéfalo/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Epigênese Genética , Código das Histonas , Rosuvastatina Cálcica/efeitos adversos , Animais , Anticolesterolemiantes/farmacologia , Encéfalo/embriologia , Encéfalo/metabolismo , Feminino , Histonas/efeitos dos fármacos , Histonas/metabolismo , Metilação , Ratos , Ratos Sprague-Dawley , Rosuvastatina Cálcica/farmacologia
6.
J Neuroinflammation ; 18(1): 22, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33423680

RESUMO

BACKGROUND: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. METHODS: In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNFα and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. RESULTS: Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNFα in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNFα compared to wild-type cells under inflammatory conditions. CONCLUSIONS: Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response.


Assuntos
Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/metabolismo , Etanol/toxicidade , Proteínas de Choque Térmico/biossíntese , Mediadores da Inflamação/metabolismo , Chaperonas Moleculares/biossíntese , Animais , Lesões Encefálicas/genética , Células Cultivadas , Etanol/administração & dosagem , Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/genética
7.
Curr Pharm Des ; 26(13): 1486-1494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32067608

RESUMO

Serum lipid levels are closely related to the structure and function of blood vessels. Chronic hyperlipidemia may lead to damage in both the cardio- and the cerebrovascular systems. Vascular dysfunctions, including impairments of the blood-brain barrier, are known to be associated with neurodegenerative diseases. A growing number of evidence suggests that cardiovascular risk factors, such as hyperlipidemia, may increase the likelihood of developing dementia. Due to differences in lipoprotein metabolism, wild-type mice are protected against dietinduced hypercholesterolemia, and their serum lipid profile is different from that observed in humans. Therefore, several transgenic mouse models have been established to study the role of different apolipoproteins and their receptors in lipid metabolism, as well as the complications related to pathological lipoprotein levels. This minireview focused on a transgenic mouse model overexpressing an apolipoprotein, the human ApoB-100. We discussed literature data and current advancements on the understanding of ApoB-100 induced cardio- and cerebrovascular lesions in order to demonstrate the involvement of this type of apolipoprotein in a wide range of pathologies, and a link between hyperlipidemia and neurodegeneration.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Animais , Apolipoproteína B-100/genética , Apolipoproteínas B , Humanos , Camundongos , Camundongos Transgênicos
8.
Front Cell Neurosci ; 12: 380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410436

RESUMO

Hypertriglyceridemia is not only a serious risk factor in the development of cardiovascular diseases, but it is linked to neurodegeneration, too. Previously, we generated transgenic mice overexpressing the human APOB-100 protein, a mouse model of human atherosclerosis. In this model we observed high plasma levels of triglycerides, oxidative stress, tau hyperphosphorylation, synaptic dysfunction, cognitive impairment, increased neural apoptosis and neurodegeneration. Neurovascular dysfunction is recognized as a key factor in the development of neurodegenerative diseases, but the cellular and molecular events linking cerebrovascular pathology and neurodegeneration are not fully understood. Our aim was to study cerebrovascular changes in APOB-100 transgenic mice. We described the kinetics of the development of chronic hypertriglyceridemia in the transgenic animals. Increased blood-brain barrier permeability was found in the hippocampus of APOB-100 transgenic mice which was accompanied by structural changes. Using transmission electron microscopy, we detected changes in the brain capillary endothelial tight junction structure and edematous swelling of astrocyte endfeet. In brain microvessels isolated from APOB-100 transgenic animals increased Lox-1, Aqp4, and decreased Meox-2, Mfsd2a, Abcb1a, Lrp2, Glut-1, Nos2, Nos3, Vim, and in transgenic brains reduced Cdh2 and Gfap-σ gene expressions were measured using quantitative real-time PCR. We confirmed the decreased P-glycoprotein (ABCB1) and vimentin expression related to the neurovascular unit by immunostaining in transgenic brain sections using confocal microscopy. We conclude that in chronic hypertriglyceridemic APOB-100 transgenic mice both functional and morphological cerebrovascular pathology can be observed, and this animal model could be a useful tool to study the link between cerebrovascular pathology and neurodegeneration.

9.
Curr Pharm Des ; 23(28): 4198-4205, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28748755

RESUMO

BACKGROUND: The blood-brain barrier restricts drug penetration to the central nervous system. Targeted nanocarriers are new potential tools to increase the brain entry of drugs. Ligands of endogenous transporters of the blood-brain barrier can be used as targeting vectors for brain delivery of nanoparticles. OBJECTIVE: We tested biotin-labeled solid nanoparticles for the first time and compared to biotinylated glutathione- labeled nanoparticles in brain endothelial cells. METHOD: Neutravidin coated fluorescent polystyrene nanoparticles were derivatized with biotin and biotinylated glutathione. As a human in vitro blood-brain barrier model hCMEC/D3 brain endothelial cells were used. Cell viability by MTT test, uptake and transfer of the nanoparticles across the endothelial monolayers were measured. The uptake of the nanoparticles was visualized by confocal microscopy. RESULTS: The tested nanoparticles caused no change in cell viability. The uptake of biotin- and glutathione-labeled nanoparticles by brain endothelial cells was time-dependent and significantly higher compared to non-labeled nanoparticles. The penetration of the glutathione-labeled nanoparticles across the endothelial monolayer was higher than the biotin-targeted ones. Biotin- and glutathione-targeted nanoparticles were visualized in hCMEC/D3 cells. We verified that hCMEC/D3 express mRNA for sodium-dependent multivitamin transporter (SMVT/SLC5A6) responsible for the blood-brain barrier transport of biotin. CONCLUSION: Biotin as a ligand increased the uptake and the transfer of nanoparticles across brain endothelial cells. Biotinylated glutathione could further increase nanoparticle permeability through endothelial monolayers supporting its use as a brain targeting vector.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Animais , Transporte Biológico , Biotina/administração & dosagem , Sobrevivência Celular , Células Endoteliais/metabolismo , Glutationa/administração & dosagem , Humanos , Nanopartículas , Distribuição Tecidual
10.
Front Mol Neurosci ; 8: 88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834555

RESUMO

Stress is well-known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognized in the development of neurodegenerative disorders, such as Alzheimer's disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3, and 21 days) were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occluding, and glucose transporter-1) and astroglia (GFAP). Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, 1-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5, and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes, cognitive and behavioral dysfunctions.

11.
Acta Neurobiol Exp (Wars) ; 74(1): 1-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718039

RESUMO

The expression pattern of aromatase (ARO), the enzyme converting androgens to estrogens, was analyzed in the olfactory bulb of adult male rats and was compared with the distribution of estrogen receptor beta (ERbeta), the main estrogen receptor isoform expressed in this brain region. A strong ARO immunolabeling obtained with a specificity tested antibody was observed in juxtaglomerular neurons of the glomerular layer and a weaker immunoreaction was detected in the mitral cell layer of the main olfactory bulb, while the granule cell layer of the main olfactory bulb as well as all layers in the accessory olfactory bulb showed faint immunolabeling. Fluorescence double labeling experiments revealed that ARO detected in juxtaglomerular neurons of the main olfactory bulb colocalized with tyrosine hydroxylase (TH) and glutamic acid decarboxylase 67 (GAD67), while no colocalization between ARO and the calcium binding proteins calretinin (CR) and calbindin (CB) was observed. Furthermore, the TH immunoreactive neurons expressed metabotropic glutamate receptor 1 (mGluR1) too. ERß immunoreactivity, in contrast to ARO, was detected in all layers of both the main and accessory olfactory bulb. In the glomerular layer of the main olfactory bulb it was expressed in TH and GAD67 containing juxtaglomerular neurons, and it colocalized with CR, CB and even with glial fibrillary acidic protein too. Our morphological findings suggest that ARO expression is a novel feature of dopaminergic/GABAergic juxtaglomerular neurons in the adult rat main olfactory bulb, and raise the possibility that ARO activity may change in function of olfactory input via mGluR1. In situ estrogen production in the olfactory bulb in turn may modulate interglomerular circuits through ERbeta.


Assuntos
Aromatase/metabolismo , Receptor beta de Estrogênio/metabolismo , Bulbo Olfatório/metabolismo , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Neurônios/metabolismo , Bulbo Olfatório/anatomia & histologia , Condutos Olfatórios/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Steroids ; 75(3): 265-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20064537

RESUMO

The naturally occurring steroid dehydroepiandrosterone (DHEA) is reported to reduce glial fibrillary acidic protein (GFAP) overexpression in a model of reactive gliosis due to its conversion to estradiol by the enzyme aromatase. In the present study we examined the biological effect of a new epimerized derivative of DHEA, 16alpha-iodomethyl-13alpha-dehydroepiandrosterone derivative (16alpha-iodomethyl-13alpha-DHEAd, 16alpha-iodomethyl-13alpha-androst-5-en-3beta,17beta-diol), using the same model system, and compared the 3D structure of this molecule with that of DHEA and two steroidal type aromatase inhibitors, formestane and exemestane. The synthetic compound, in contrast to the reported effect of DHEA, was able to reduce GFAP overexpression only if the enzyme aromatase was inhibited. Data obtained from computational calculations fortified by X-ray crystallography revealed that contrary to the nearly planar sterane framework of DHEA, the synthetic derivative 16alpha-iodomethyl-13alpha-DHEAd has a bent sterane skeleton, resulting in a 3D structure that is similar to that of formestane or exemestane. Moreover, 16alpha-iodomethyl-13alpha-DHEAd resulted to be metabolically more stable than DHEA. The results suggest that epimerization of the sterane skeleton of DHEA inclines the plane of the D ring, leading to a significantly altered biological activity. The synthetic molecule has a DHEA-like effect on GFAP overexpression when the enzyme aromatase is inhibited and the naturally occurring DHEA is ineffective in this respect. On the other hand, based on their structural similarity it can be hypothesized that 16alpha-iodomethyl-13alpha-DHEAd applied alone might have a biological effect similar to that of formestane or exemestane.


Assuntos
Desidroepiandrosterona/análogos & derivados , Desidroepiandrosterona/uso terapêutico , Gliose/tratamento farmacológico , Androstadienos/química , Androstadienos/metabolismo , Androstenodiona/análogos & derivados , Androstenodiona/química , Androstenodiona/metabolismo , Animais , Aromatase/química , Aromatase/metabolismo , Inibidores da Aromatase/química , Inibidores da Aromatase/metabolismo , Cristalografia por Raios X , Desidroepiandrosterona/química , Desidroepiandrosterona/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Masculino , Dados de Sequência Molecular , Estrutura Molecular , Ratos , Ratos Wistar
13.
Endocrinology ; 149(8): 4137-41, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18420742

RESUMO

Gonadal steroids induce synaptic plasticity in several areas of the adult nervous system. In the arcuate nucleus of adult female rats, 17beta-estradiol triggers synaptic remodeling, resulting in a decrease in the number of inhibitory synaptic inputs, an increase in the number of excitatory synapses, and an enhancement of the frequency of neuronal firing. In the present paper, we studied the specificity of hormonal effects by determining the changes in synaptic connectivity of tyrosine hydroxylase (TH) immunoreactive (IR) neurons in the arcuate nucleus. We combined pre-embedding TH and post-embedding gamma-aminobutyric acid (GABA) immunostaining, and performed unbiased stereological measurements in gonadectomized and 17beta-estradiol-treated rats. We conclude that the synaptic connectivity of the TH-IR neurons is different from the other, nonlabeled population, and the response to estradiol is not uniform. TH-IR (dopaminergic) arcuate neurons of both male and female rats have more GABAergic (inhibitory) axosomatic inputs than the nondopaminergic population. Our study shows that the effect of 17beta-estradiol is sex and cell specific in the sense that not all arcuate neurons are affected by the structural synaptic remodeling. In ovariectomized females hormone treatment decreased the numerical density of GABAergic axosomatic synapses on TH-IR, but not on nondopaminergic, neurons, whereas in orchidectomized males, 17beta-estradiol treatment increased inhibitory synapses onto nondopaminergic neurons but did not affect the number of inhibitory terminals onto TH-IR neurons. The hormone-induced plastic changes in synaptic connectivity of TH-IR neurons may serve as the morphological basis for the cyclical regulation of the anterior pituitary.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Estradiol/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Castração , Contagem de Células , Feminino , Imuno-Histoquímica , Masculino , Neurônios/citologia , Neurônios/metabolismo , Ratos , Caracteres Sexuais , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/imunologia , Ácido gama-Aminobutírico/metabolismo
14.
FEBS J ; 272(23): 6077-86, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16302971

RESUMO

The concentrations of two structurally distinct membrane fluidizers, the local anesthetic benzyl alcohol (BA) and heptanol (HE), were used at concentrations so that their addition to K562 cells caused identical increases in the level of plasma membrane fluidity as tested by 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy. The level of membrane fluidization induced by the chemical agents on isolated membranes at such concentrations corresponded to the membrane fluidity increase seen during a thermal shift up to 42 degrees C. The formation of isofluid membrane states in response to the administration of BA or HE resulted in almost identical downshifts in the temperature thresholds of the heat shock response, accompanied by increases in the expression of genes for stress proteins such as heat shock protein (HSP)-70 at the physiological temperature. Similarly to thermal stress, the exposure of the cells to these membrane fluidizers elicited nearly identical increases of cytosolic Ca2+ concentration in both Ca2+-containing and Ca2+-free media and also closely similar extents of increase in mitochondrial hyperpolarization. We obtained no evidence that the activation of heat shock protein expression by membrane fluidizers is induced by a protein-unfolding signal. We suggest, that the increase of fluidity in specific membrane domains, together with subsequent alterations in key cellular events are converted into signal(s) leading to activation of heat shock genes.


Assuntos
Anestésicos Locais/farmacologia , Álcool Benzílico/farmacologia , Membrana Celular , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Heptanol/farmacologia , Fluidez de Membrana , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Forma Celular , Células HeLa , Temperatura Alta , Humanos , Células K562 , Potenciais da Membrana/fisiologia , Desnaturação Proteica
15.
Environ Toxicol Pharmacol ; 19(3): 797-810, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-21783557

RESUMO

In male Wistar rats, behavioral and electrophysiological investigations, and blood and brain manganese level determinations, were performed; during 10 weeks treatment with low-dose manganese chloride and a 12 weeks post-treatment period. Three groups of 16 animals each received daily doses of 14.84 and 59.36mg/kg b.w. MnCl(2) (control: distilled water) via gavage. During treatment period, Mn accumulation was seen first in the blood, then in the brain samples of the high-dose animals. Short- and long-term spatial memory performance of the treated animals decreased, spontaneous open field activity (OF) was reduced. The number of acoustic startle responses (ASR), and the pre-pulse inhibition (PPI) of these, diminished. In the cortical and hippocampal spontaneous activity, power spectrum was shifted to higher frequencies. The latency of the sensory evoked potentials increased, and their duration, decreased. By the end of the post-treatment period, Mn levels returned to the control in all samples. The impairment of long-term spatial memory remained, as did the number of acoustic startle responses. Pre-pulse inhibition, however, returned to the pre-treatment levels. The changes of the open field activity disappeared but a residual effect could be revealed by administration of d-amphetamine. The electrophysiological effects were partially reversed. By applying a complex set of methods, it was possible to obtain new data for a better-based relationship between the known effects of Mn at neuronal level and the behavioral and electrophysiological outcomes of Mn exposure.

16.
Glia ; 48(3): 207-16, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15390121

RESUMO

Effects of dehydroepiandrosterone (DHEA) on glial reactions of the peripherally denervated olfactory bulb were studied in adult male rats. Denervation was achieved by destroying the olfactory mucosa with ZnSO(4) (0.17 M) irrigation of the nasal cavities. In one series of experiments, chronic DHEA treatment was applied (daily injections for 7 days, i.p., 10 mg/kg b.w. and 25 mg/kg b.w.); in the other series of experiments, animals received a single injection of DHEA (i.p., 10 mg/kg b.w., 25 mg/kg b.w. and 50 mg/kg b.w.) 2 h following ZnSO(4) treatment. To determine whether DHEA conversion to estradiol was involved in the mechanism of DHEA action on glia, a third series of experiments was carried out in which the aromatase inhibitor fadrozole (4.16 mg/ml) was administered using subcutaneously implanted osmotic minipumps. Rats were killed on day 7 after chemical denervation, and the reaction of glial cells was monitored within the olfactory bulb, using GFAP and vimentin immunohistochemistry. Qualitative changes in GFAP expression were analyzed by Western blot. Chronic DHEA treatment with both doses (10 mg/kg b.w. and 25 mg/kg b.w.) and acute DHEA treatment with the highest dose applied (50 mg/kg b.w.), inhibited the increase in GFAP expression induced by the denervation of the olfactory bulb. Furthermore, GFAP and vimentin immunostaining in the glomerular layer of the olfactory bulb were diminished in the denervated and DHEA treated groups. However, when DHEA treatment was combined with fadrozole administration, such a decrease in GFAP expression could not be detected in the chemically denervated olfactory bulb. These findings indicate that DHEA, depending on the dose applied and the mode of administration, attenuates glial reaction to denervation and may regulate glial plasticity in the olfactory glomeruli. These effects are likely to be mediated at least in part by the conversion of DHEA to estradiol.


Assuntos
Astrócitos/efeitos dos fármacos , Desidroepiandrosterona/farmacologia , Gliose/tratamento farmacológico , Bulbo Olfatório/efeitos dos fármacos , Traumatismos do Nervo Olfatório , Animais , Aromatase/efeitos dos fármacos , Aromatase/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Biomarcadores , Denervação , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Inibidores Enzimáticos/farmacologia , Estradiol/biossíntese , Fadrozol/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/fisiopatologia , Imuno-Histoquímica , Masculino , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Nervo Olfatório/cirurgia , Ratos , Ratos Wistar , Vimentina/metabolismo , Sulfato de Zinco
17.
Acta Biol Hung ; 53(1-2): 67-75, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12064780

RESUMO

The polysialylated, embryonic form of the neuronal cell adhesion molecule (PSA-NCAM) is known to participate in a whole series of synaptic rearrangements even in adult animals. The possible role of this molecule in neuroplastic changes of the adult rat somatosensory cortex induced by unilateral transection of the infraorbital branch of the trigeminal nerve was studied with PSA-NCAM immunostaining at light microscopic level. Two- and three-month-old CFY albino rats were sacrificied on days 1, 4, 6, 14 and 21 following operation and PSA-NCAM immunoreaction was examined at three levels of the vibrissa-cortex neuraxis, namely, in the principal nucleus of the trigeminal nerve, in the ventral posteromedial nucleus of the thalamus and in the somatosensory cortex. The lower levels of the neuraxis remained free of PSA-NCAM labeling, similarly to control, intact animals. However, a large number of scattered small neurons became PSA-NCAM immunoreactive in layers IV-VI on both ipsi- and contralateral sides of the somatosensory cortex from day 6 onwards, suggesting a possible transynaptic regulation of NCAM sialylation state.


Assuntos
Molécula L1 de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Córtex Somatossensorial/metabolismo , Traumatismos do Nervo Trigêmeo , Nervo Trigêmeo/metabolismo , Animais , Imuno-Histoquímica , Regeneração Nervosa , Plasticidade Neuronal , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA