Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 949: 311-332, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27714696

RESUMO

The aim of this work was to combine our previously published results with our new data to show how galectin-3 (Gal-3) controls myelin integrity and function, promotes oligodendroglial cell differentiation, and regulates microglial responses to limit cuprizone- (CPZ)-induced demyelination and foster remyelination. In this study, 8-week-old Gal-3-deficient (Lgals3 -/-) and wild type (WT) mice were fed a diet containing 0.2 % CPZ w/w for 6 weeks, after which CPZ was withdrawn in order to allow remyelination. Our results show that remyelination was less efficient in Lgals3 -/- than in WT mice. Electron microscopic images from remyelinated sections in Lgals3 -/- mice revealed collapsed axons with a defective myelin wrap, while remyelinated WT mice had normal axons without relevant myelin wrap disruption. MMP-3 expression increased during remyelination in WT but not in Lgals3 -/- mice. The number of CD45+, TNFα+ and TREM-2b+ cells decreased only in WT mice only, with no alterations in Lgals3 -/- mice during demyelination and remyelination. Therefore, Gal-3 influences remyelination by mechanisms involving the tuning of microglial cells, modulation of MMP activity, and changes in myelin architecture.


Assuntos
Astrócitos/patologia , Doenças Desmielinizantes/genética , Galectina 3/genética , Microglia/patologia , Oligodendroglia/patologia , Regeneração/genética , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Axônios/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/reabilitação , Galectina 3/deficiência , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Masculino , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Oligodendroglia/metabolismo , Fagocitose , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Neurobiol Dis ; 62: 441-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24184798

RESUMO

Galectin-3 (Gal-3) is a ß-galactoside-binding lectin that plays an important role in inflammatory and neurodegenerative diseases. Cuprizone (CPZ)-induced demyelination is characterized by the loss of mature oligodendrocytes (OLG) by apoptosis, myelin sheath degeneration and recruitment of microglia and astrocytes to the lesioned area. We compared CPZ-induced demyelination of 8-week-old Lgals3(-/-) vs WT mice. Lgals3(-/-) mice displayed a similar susceptibility to CPZ-induced demyelination up to the fifth week, as evaluated by MBP immunostaining and electronic microscopy. However, OLG progenitors (OPC) generated in CPZ-treated Lgals3(-/-) mice showed diminished arborization, suggesting decreased ability of these cells to differentiate. Surprisingly, while WT mice experienced spontaneous remyelination in the fifth week of CPZ treatment-even though the CPZ diet was maintained up to sixth week-Lgals3(-/-) mice lacked this capacity and suffered continuous demyelination up to the sixth week, accompanied by pronounced astroglial activation. Moreover, after 2weeks of CPZ treatment, WT and Lgals3(-/-) mice showed lower innate anxiety as compared with respective naive mice, but only CPZ-treated Lgals3(-/-) mice showed decreased locomotor activity and exhibited spatial working memory impairment. Expression of Gal-3 increased during CPZ-induced demyelination in microglia but not in astrocytes. While CPZ-treated WT mice displayed heightened microglial activation associated with ED1 expression and pronounced upregulation of the phagocytic receptor TREM-2b, this effect was not observed in CPZ-treated Lgals3(-/-) mice which, in spite of showing an increased number of microglia, these cells evidenced caspase-3 activation. Our results indicate that Gal-3 is expressed in microglial cells to modulate their phenotype, facilitating the onset of remyelination and OLG differentiation.


Assuntos
Corpo Caloso/ultraestrutura , Cuprizona/toxicidade , Doenças Desmielinizantes/metabolismo , Galectina 3/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Galectina 3/genética , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/ultraestrutura , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Fagocitose/efeitos dos fármacos
3.
Cell Death Differ ; 18(11): 1746-56, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21566659

RESUMO

Galectins control critical pathophysiological processes, including the progression and resolution of central nervous system (CNS) inflammation. In spite of considerable progress in dissecting their role within lymphoid organs, their functions within the inflamed CNS remain elusive. Here, we investigated the role of galectin-glycan interactions in the control of oligodendrocyte (OLG) differentiation, myelin integrity and function. Both galectin-1 and -3 were abundant in astrocytes and microglia. Although galectin-1 was abundant in immature but not in differentiated OLGs, galectin-3 was upregulated during OLG differentiation. Biochemical analysis revealed increased activity of metalloproteinases responsible for cleaving galectin-3 during OLG differentiation and modulating its biological activity. Exposure to galectin-3 promoted OLG differentiation in a dose- and carbohydrate-dependent fashion consistent with the 'glycosylation signature' of immature versus differentiated OLG. Accordingly, conditioned media from galectin-3-expressing, but not galectin-3-deficient (Lgals3(-/-)) microglia, successfully promoted OLG differentiation. Supporting these findings, morphometric analysis showed a significant decrease in the frequency of myelinated axons, myelin turns (lamellae) and g-ratio in the corpus callosum and striatum of Lgals3(-/-) compared with wild-type (WT) mice. Moreover, the myelin structure was loosely wrapped around the axons and less smooth in Lgals3(-/-) mice versus WT mice. Behavior analysis revealed decreased anxiety in Lgals3(-/-) mice similar to that observed during early demyelination induced by cuprizone intoxication. Finally, commitment toward the oligodendroglial fate was favored in neurospheres isolated from WT but not Lgals3(-/-) mice. Hence, glial-derived galectin-3, but not galectin-1, promotes OLG differentiation, thus contributing to myelin integrity and function with critical implications in the recovery of inflammatory demyelinating disorders.


Assuntos
Diferenciação Celular , Bainha de Mielina/fisiologia , Oligodendroglia/citologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Axônios/metabolismo , Comportamento Animal , Células Cultivadas , Cuprizona/toxicidade , Galectina 1/metabolismo , Galectina 3/deficiência , Galectina 3/genética , Galectina 3/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA