Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 12(1): 17076, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224296

RESUMO

Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is widely used in the treatment of patients experiencing cardiogenic shock (CS). However, increased VA-ECMO blood flow (EBF) may significantly impair left ventricular (LV) performance. The objective of the present study was to assess the effect of VA-ECMO on LV function in acute CS with concomitant severe aortic stenosis (AS) or mitral regurgitation (MR) in a porcine model. Eight female swine (45 kg) underwent VA-ECMO implantation under general anaesthesia and mechanical ventilation. Acute CS was induced by global myocardial hypoxia. Subsequently, severe AS was simulated by obstruction of the aortic valve, while severe MR was induced by mechanical destruction of the mitral valve. Haemodynamic and LV performance variables were measured at different rates of EBF rates (ranging from 1 to 4 L/min), using arterial and venous catheters, a pulmonary artery catheter, and LV pressure-volume catheter. Data are expressed as median (interquartile range). Myocardial hypoxia resulted in declines in cardiac output to 2.7 (1.9-3.1) L/min and LV ejection fraction to 15.2% (10.5-19.3%). In severe AS, increasing EBF from 1 to 4 L/min was associated with a significant elevation in mean arterial pressure (MAP), from 33.5 (24.2-34.9) to 56.0 (51.9-73.3) mmHg (P ˂ 0.01). However, LV volumes (end-diastolic, end-systolic, stroke) remained unchanged, and LV end-diastolic pressure (LVEDP) significantly decreased from 24.9 (21.2-40.0) to 19.1 (15.2-29.0) mmHg (P ˂ 0.01). In severe MR, increasing EBF resulted in a significant elevation in MAP from 49.0 (28.0-53.4) to 72.5 (51.4-77.1) mmHg (P ˂ 0.01); LV volumes remained stable and LVEDP increased from 17.1 (13.7-19.1) to 20.8 (16.3-25.6) mmHg (P ˂ 0.01). Results of this study indicate that the presence of valvular heart disease may alleviate negative effect of VA-ECMO on LV performance in CS. Severe AS fully protected against LV overload, and partial protection was also detected with severe MR, although at the cost of increased LVEDP and, thus, higher risk for pulmonary oedema.


Assuntos
Estenose da Valva Aórtica , Oxigenação por Membrana Extracorpórea , Insuficiência da Valva Mitral , Animais , Oxigenação por Membrana Extracorpórea/métodos , Feminino , Hipóxia , Insuficiência da Valva Mitral/terapia , Choque Cardiogênico/terapia , Suínos , Função Ventricular Esquerda/fisiologia
2.
PLoS One ; 13(4): e0196321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689088

RESUMO

INTRODUCTION: Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock. METHODS: Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire. RESULTS: Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P<0.05). At selected ECLS flow rates, pulsatile flow also reduced LV end-diastolic pressure, end-diastolic volume, and systolic pressure. ECG-synchronized pulsatile flow was also associated with significantly increased (7% to 22%) coronary flow at all ECLS flow rates. CONCLUSION: ECG-synchronized pulsatile ECLS flow preserved LV function and coronary flow compared with standard continuous-flow ECLS in a porcine model of cardiogenic shock.


Assuntos
Circulação Coronária/fisiologia , Modelos Animais de Doenças , Oxigenação por Membrana Extracorpórea/métodos , Fluxo Pulsátil/fisiologia , Choque Cardiogênico/terapia , Suínos , Função Ventricular Esquerda/fisiologia , Animais , Vasos Coronários/fisiopatologia , Eletrocardiografia/métodos , Feminino , Hemodinâmica , Cuidados para Prolongar a Vida/métodos , Choque Cardiogênico/patologia , Choque Cardiogênico/fisiopatologia
3.
Artif Organs ; 40(4): 353-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26412075

RESUMO

The protective effects of ischemic postconditioning (IPC) and nitric oxide (NO) administration have been demonstrated in several ischemic scenarios. However, current evidence regarding the effect of IPC and NO in extracorporeal cardiopulmonary resuscitation remains lacking. Fifteen female swine (body weight 45 kg) underwent veno-arterial extracorporeal membrane oxygenation (ECMO) implantation; cardiac arrest-ventricular fibrillation was induced by rapid ventricular pacing. After 20 min of cardiac arrest, blood flow was restored by increasing the ECMO flow rate to 4.5 L/min. The animals (five per group) were then randomly assigned to receive IPC (three cycles of 3 min ischemia and reperfusion), NO (80 ppm via oxygenator), or mild hypothermia (HT; 33.0°C). Cerebral oximetry and aortic blood pressure were monitored continuously. After 90 min of reperfusion, blood samples were drawn for the measurement of troponin I, myoglobin, creatine-phosphokinase, alanine aminotransferase, neuron-specific enolase, cystatin C, and reactive oxygen metabolite (ROM) levels. Significantly higher blood pressure and cerebral oxygen saturation values were observed in the HT group compared with the IPC and NO groups (P < 0.05). The levels of troponin I, myoglobin, creatine phosphokinase, and alanine aminotransferase were significantly lower in the HT group (P < 0.05); levels of neuron-specific enolase, cystatin C, and ROM were not significantly different. IPC and NO were comparable in all monitored parameters. The results of the present study indicate that IPC and NO administration are not superior interventions to HT for the maintenance of blood pressure, cerebral oxygenation, organ protection, and suppression of oxidative stress following extracorporeal cardiopulmonary resuscitation.


Assuntos
Reanimação Cardiopulmonar/métodos , Oxigenação por Membrana Extracorpórea/métodos , Pós-Condicionamento Isquêmico/métodos , Óxido Nítrico/uso terapêutico , Substâncias Protetoras/uso terapêutico , Alanina Transaminase/sangue , Animais , Pressão Sanguínea , Creatina Quinase/sangue , Cistatina C/sangue , Modelos Animais de Doenças , Feminino , Mioglobina/sangue , Estresse Oxidativo , Fosfopiruvato Hidratase/sangue , Espécies Reativas de Oxigênio/sangue , Suínos , Troponina I/sangue
4.
J Transl Med ; 13: 266, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26275717

RESUMO

BACKGROUND: The aim of this study was to assess the relationship between extracorporeal blood flow (EBF) and left ventricular (LV) performance during venoarterial extracorporeal membrane oxygenation (VA ECMO) therapy. METHODS: Five swine (body weight 45 kg) underwent VA ECMO implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock with signs of tissue hypoxia was induced. Hemodynamic and cardiac performance parameters were then measured at different levels of EBF (ranging from 1 to 5 L/min) using arterial and venous catheters, a pulmonary artery catheter and a pressure-volume loop catheter introduced into the left ventricle. RESULTS: Myocardial hypoxia resulted in a decline in mean (±SEM) cardiac output to 2.8 ± 0.3 L/min and systolic blood pressure (SBP) to 60 ± 7 mmHg. With an increase in EBF from 1 to 5 L/min, SBP increased to 97 ± 8 mmHg (P < 0.001); however, increasing EBF from 1 to 5 L/min significantly negatively influences several cardiac performance parameters: cardiac output decreased form 2.8 ± 0.3 L/min to 1.86 ± 0.53 L/min (P < 0.001), LV end-systolic volume increased from 64 ± 11 mL to 83 ± 14 mL (P < 0.001), LV stroke volume decreased from 48 ± 9 mL to 40 ± 8 mL (P = 0.045), LV ejection fraction decreased from 43 ± 3 % to 32 ± 3 % (P < 0.001) and stroke work increased from 2096 ± 342 mmHg mL to 3031 ± 404 mmHg mL (P < 0.001). LV end-diastolic pressure and volume were not significantly affected. CONCLUSIONS: The results of the present study indicate that higher levels of VA ECMO blood flow in cardiogenic shock may negatively affect LV function. Therefore, it appears that to mitigate negative effects on LV function, optimal VA ECMO blood flow should be set as low as possible to allow adequate tissue perfusion.


Assuntos
Circulação Coronária/fisiologia , Vasos Coronários/fisiopatologia , Oxigenação por Membrana Extracorpórea , Choque Cardiogênico/fisiopatologia , Função Ventricular Esquerda , Animais , Vasos Coronários/patologia , Modelos Animais de Doenças , Feminino , Hemodinâmica , Miocárdio/patologia , Pressão
5.
Int J Artif Organs ; 37(1): 48-57, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24634334

RESUMO

BACKGROUND: The aim of our study was to analyze, in a pig model of prolonged ventricular fibrillation (VF) treated by veno-arterial extracorporeal membrane oxygenation (ECMO), the time dependent changes of VF wavelet frequency obtained from intracardial signals and its relations to return of spontaneous circulation (ROSC). METHODS: 11 female pigs (50.3 ± 3.4 kg) under general anesthesia had undergone 15 min of VF with ECMO flow of 5 to 10 ml/kg per min simulating "untreated" VF followed by continued VF with full ECMO flow of 100 ml/kg per min. The median frequency (MF) of VF from right ventricular apex, coronary perfusion pressure, myocardial oxygen metabolism and resuscitability were determined. RESULTS: Median (interquartile range) of MF of fibrillatory wavelets in minute 15 of low ECMO flow [9.7 Hz (8.3; 10.1)] was not significantly changed in comparison to minute 1 [10.5 Hz (9.8; 12.4)], p = 0.12. Five minutes after full ECMO initiation MF increased [11.6 Hz (10.6; 13.5)], p = 0.04 (compared to minute 15 of VF) and did not deteriorate during the rest of ECMO treatment. Out of all subjects, three animals did not reach ROSC. Those subjects demonstrated deeper decrease of MF at the VF minute 15 as compared to others [-2.4 Hz (-2.5; -2.3) vs. -0.6 Hz (-1.6; -0.1)] and continuously significantly higher increase in MF on full ECMO support [4.3 Hz (2.9; 5.6) vs. 1.1 Hz (0.6; 1.6)] with p = 0.05 for both observations, respectively. CONCLUSIONS: The veno-arterial ECMO reperfusion influences MF of VF wavelet obtained from right ventricular apex. The course of changes in wavelet frequency corresponds to a presence of later ROSC.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Fibrilação Ventricular/terapia , Animais , Pressão Arterial/fisiologia , Reanimação Cardiopulmonar/métodos , Modelos Animais de Doenças , Feminino , Recuperação de Função Fisiológica/fisiologia , Suínos , Fibrilação Ventricular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA