RESUMO
Acral peeling skin syndrome (APSS) is a heterogenous group of genodermatoses, manifested by peeling of palmo-plantar skin and occasionally associated with erythema and epidermal thickening. A subset of APSS is caused by mutations in protease inhibitor encoding genes, resulting in unopposed protease activity and desmosomal degradation and/or mis-localization, leading to enhanced epidermal desquamation. We investigated two Arab-Muslim siblings with mild keratoderma and prominent APSS since infancy. Genetic analysis disclosed a homozygous mutation in SERPINB7, c.796C > T, which is the founder mutation in Nagashima type palmo-plantar keratosis (NPPK). Although not previously formally reported, APSS was found in other patients with NPPK. We hypothesized that loss of SERPINB7 function might contribute to the peeling phenotype through impairment of keratinocyte adhesion, similar to other protease inhibitor mutations that cause APSS. Mis-localization of desmosomal components was observed in a patient plantar biopsy compared with a biopsy from an age- and gender-matched healthy control. Silencing of SERPINB7 in normal human epidermal keratinocytes led to increased cell sheet fragmentation upon mechanical stress. Immunostaining showed reduced expression of desmoglein 1 and desmocollin 1. This study shows that in addition to stratum corneum perturbation, loss of SERPINB7 disrupts desmosomal components, which could lead to desquamation, manifested by skin peeling.
Assuntos
Ceratodermia Palmar e Plantar , Serpinas , Atrofia , Homozigoto , Humanos , Queratinócitos/patologia , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/patologia , Inibidores de Serina Proteinase , Serpinas/genética , Dermatopatias/congênitoRESUMO
Neurofibromatosis 1 (NF1) is caused by germline mutations in the NF1 gene and manifests as proliferation of various tissues, including plexiform neurofibromas. The plexiform neurofibroma phenotype varies from indolent to locally aggressive, suggesting contributions of other modifiers in addition to somatic loss of NF1. In this study, we investigated a life-threatening plexiform neurofibroma in a 9-month-old female infant with NF1. Germline mutations in two RASopathy-associated genes were identified using whole-exome sequencing-a de novo pathogenic variant in the NF1 gene, and a known pathogenic variant in the LZTR1 gene. Somatic analysis of the plexiform neurofibroma revealed NF1 loss of heterozygosity and a variant in GNAZ, a gene encoding a G protein-coupled receptor. Cells expressing mutant GNAZ exhibited increased ERK 1/2 activation compared to those expressing wild-type GNAZ. Taken together, we suggest the variants in NF1, LZRT1 and GNAZ act synergistically in our patient, leading to MAPK pathway activation and contributing to the severity of the patient's plexiform neurofibromatosis. After treatment with the MEK inhibitor, trametinib, a prominent clinical improvement was observed in this patient. This case study contributes to the knowledge of germline and somatic non-NF1 variants affecting the NF1 clinical phenotype and supports use of personalized, targeted therapy.