Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(46): 52116-52124, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33156990

RESUMO

Microwave and heat-assisted magnetic recordings are two competing technologies that have greatly increased the capacity of hard disk drives. The efficiency of the magnetic recording process can be further improved by employing non-collinear spin structures that combine perpendicular and in-plane magnetic anisotropy. Here, we investigate both microwave and optically excited magnetization dynamics in [Co/Pt]/NiFe exchange spring samples. The resulting canted magnetization within the nanoscale [Co/Pt]/NiFe interfacial region allows for optically stimulated magnetization precession to be observed for an extended magnetic field and frequency range. The results can be explained by formation of an imprinted domain structure, which locks the magnetization orientation and makes the structures more robust against external perturbations. Tuning the canted interfacial domain structure may provide greater control of optically excited magnetization reversal and optically generated spin currents, which are of paramount importance for future ultrafast magnetic recording and spintronic applications.

2.
Sci Rep ; 8(1): 3879, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497088

RESUMO

The complex magnetic properties of Fe/Ir/Fe sandwiches are studied using a hierarchical multi-scale model. The approach uses first principles calculations and thermodynamic models to reveal the equilibrium spinwave, magnetization and dynamic demagnetisation properties. Finite temperature calculations show a complex spinwave dispersion and an initially counter-intuitive, increasing exchange stiffness with temperature (a key quantity for device applications) due to the effects of frustration at the interface, which then decreases due to magnon softening. Finally, the demagnetisation process in these structures is shown to be much slower at the interface as compared with the bulk, a key insight to interpret ultrafast laser-induced demagnetization processes in layered or interface materials.

3.
Nat Mater ; 16(11): 1106-1111, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29058727

RESUMO

Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice can lead to specific collective behaviour, including emergent magnetic monopoles, charge screening and transport, as well as magnonic response. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells.

4.
Sci Rep ; 5: 14855, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26442796

RESUMO

We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation.

5.
Nat Commun ; 6: 7836, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238042

RESUMO

Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization.

6.
Comput Math Appl ; 68(6): 639-654, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27418718

RESUMO

We propose and analyze a decoupled time-marching scheme for the coupling of the Landau-Lifshitz-Gilbert equation with a quasilinear diffusion equation for the spin accumulation. This model describes the interplay of magnetization and electron spin accumulation in magnetic and nonmagnetic multilayer structures. Despite the strong nonlinearity of the overall PDE system, the proposed integrator requires only the solution of two linear systems per time-step. Unconditional convergence of the integrator towards weak solutions is proved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA