Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Cell Commun Signal ; 22(1): 151, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408981

RESUMO

BACKGROUND: Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS: We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS: CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS: Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.


Assuntos
Benzoquinonas , Melaninas , Polyporales , Ubiquinona , Animais , Humanos , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Melaninas/metabolismo , Peixe-Zebra/metabolismo , Monofenol Mono-Oxigenase/metabolismo , alfa-MSH/metabolismo , Proteína Beclina-1/metabolismo , Melanócitos/metabolismo , Queratinócitos/metabolismo , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral
2.
Biomed Pharmacother ; 166: 115307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573659

RESUMO

The chronic disease psoriasis is associated with severe inflammation and abnormal keratinocyte propagation in the skin. Tranexamic acid (TXA), a plasmin inhibitor, is used to cure serious bleeding. We investigated whether TXA ointment mitigated Imiquimod (IMQ)-induced psoriasis-like inflammation. Furthermore, this study investigated the effect of noncytotoxic concentrations of TXA on IL-17-induced human keratinocyte (HaCaT) cells to determine the status of proliferative psoriatic keratinocytes. We found that TXA reduced IMQ-induced psoriasis-like erythema, thickness, scaling, and cumulative scores (erythema plus thickness plus scaling) on the back skin of BALB/c mice. Additionally, TXA decreased ear thickness and suppressed hyperkeratosis, hyperplasia, and inflammation of the ear epidermis in IMQ-induced BALB/c mice. Furthermore, TXA inhibited IMQ-induced splenomegaly in BALB/c mouse models. In IL-17-induced HaCaT cells, TXA inhibited ROS production and IL-8 secretion. Interestingly, TXA suppressed the IL-17-induced NFκB signaling pathway via IKK-mediated IκB degradation. TXA inhibited IL-17-induced activation of the NLRP3 inflammasome through caspase-1 and IL1ß expression. TXA inhibited IL-17-induced NLRP3 inflammasome activation by enhancing autophagy, as indicated by LC3-II accumulation, p62/SQSTM1 expression, ATG4B inhibition, and Beclin-1/Bcl-2 dysregulation. Notably, TXA suppressed IL-17-induced Nrf2-mediated keratin 17 expression. N-acetylcysteine pretreatment reversed the effects of TXA on NFκB, NLRP3 inflammasomes, and the Nrf2-mediated keratin 17 pathway in IL-17-induced HaCaT cells. Results further confirmed that in the ear skin of IMQ-induced mice, psoriasis biomarkers such as NLRP3, IL1ß, Nrf2, and keratin 17 expression were downregulated by TXA treatment. TXA improves IMQ-induced psoriasis-like inflammation in vivo and psoriatic keratinocytes in vitro. Tranexamic acid is a promising future treatment for psoriasis.


Assuntos
Dermatite , Psoríase , Ácido Tranexâmico , Humanos , Animais , Camundongos , Interleucina-17/metabolismo , Ácido Tranexâmico/farmacologia , Ácido Tranexâmico/uso terapêutico , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Queratina-17 , Fator 2 Relacionado a NF-E2 , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Pele , Queratinócitos , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Imiquimode/farmacologia , NF-kappa B/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
3.
Biomed Pharmacother ; 158: 114178, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916401

RESUMO

BACKGROUND: Antrodia salmonea (AS) exhibits anticancer activities against various cancers. OBJECTIVE: This study investigated the anticancer activities of AS on human glioblastoma (GBM8401 and U87MG) cells both in vitro and in vivo and explained the underlying molecular mechanism. METHODS: MTT, colony formation, migration/invasion assay, immunoblotting, immunofluorescence, TUNEL, Annexin V/PI staining, AO staining, GFP-LC3 transfection, TEM, qPCR, siLC3, DCFH2-DA assay, and xenografted-nude mice were used to assess the potential of AS therapy. RESULTS: AS treatment retarded growth and suppressed colony formation in glioblastoma cells. AS attenuates EMT by suppressing invasion and migration, increasing E-cadherin expression, decreasing Twist, Snail, and N-cadherin expression, and inhibiting Wnt/ß-catenin pathways in GBM8401 and U87MG cells. Furthermore, AS induced apoptosis by activating caspase-3, cleaving PARP, and dysregulating Bax and Bcl-2 in both cell lines. TUNEL assay and Annexin V/PI staining indicated AS-mediated late apoptosis. Interestingly, AS induced autophagic cell death by LC3-II accumulation, AVO formation, autophagosome GFP-LC3 puncta, p62/SQSTM1 expression, and ATG4B inhibition in GBM8401 and U87MG cells. TEM data revealed that AS favored autophagosome and autolysosome formation. The autophagy inhibitors 3-MA/CQ and LC3 knockdown suppressed AS-induced apoptosis in glioblastoma cells, indicating that the inhibition of autophagy decreased AS-induced apoptosis. Notably, the antioxidant N-acetylcysteine (NAC) inhibited AS-mediated ROS production and AS-induced apoptotic and autophagic cell death. Furthermore, AS induced ROS-mediated inhibition of the PI3K/AKT/mTOR signaling pathway. AS reduced the tumor burden in GBM8401-xenografted nude mice and significantly modulated tumor xenografts by inducing anti-EMT, apoptosis, and autophagy. AS could be a potential antitumor agent in human glioblastoma treatment.


Assuntos
Morte Celular Autofágica , Glioblastoma , Animais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Glioblastoma/tratamento farmacológico , Anexina A5 , Apoptose , Autofagia , Linhagem Celular Tumoral
4.
Toxicol Appl Pharmacol ; 465: 116453, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36914119

RESUMO

HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Ubiquinona , Humanos , Animais , Camundongos , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Carcinoma de Células Escamosas de Cabeça e Pescoço , Morte Celular , Apoptose , Linhagem Celular Tumoral , Autofagia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Nucleares , Proteína 1 Relacionada a Twist
5.
Environ Toxicol ; 38(7): 1548-1564, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36947447

RESUMO

Antrodia camphorata (AC) and Coenzyme Q0 (CoQ0 ), a novel quinone derivative of AC, exhibits antitumor activities. The present study evaluated EMT/metastasis inhibition and autophagy induction aspects of AC and CoQ0 in human glioblastoma (GBM8401) cells. Our findings revealed that AC treatment (0-150 µg/mL) hindered tumor cell proliferation and migration/invasion in GBM8401 cells. Notably, AC treatment inhibited HIF-1α and EMT by upregulating epithelial marker protein E-cadherin while downregulating mesenchymal proteins Twist, Slug, Snail, and ß-catenin. There was an appearance of the autophagy markers LC3-II and p62/SQSTM1, while ATG4B was downregulated by AC treatment. We also found that CoQ0 (0-10 µM) could inhibit migration and invasion in GBM8401 cells. In particular, E-cadherin was elevated and N-cadherin, Vimentin, Twist, Slug, and Snail, were reduced upon CoQ0 treatment. In addition, MMP-2/-9 expression and Wnt/ß-catenin pathways were downregulated. Furthermore, autophagy inhibitors 3-MA or CQ reversed the CoQ0 -elicited suppression of migration/invasion and metastasis-related proteins (Vimentin, Snail, and ß-catenin). Results suggested autophagy-mediated antiEMT and antimetastasis upon CoQ0 treatment. CoQ0 inhibited HIF-1α and metastasis in GBM8401 cells under normoxia and hypoxia. HIF-1α knockdown using siRNA accelerated CoQ0 -inhibited migration. Finally, CoQ0 exhibited a prolonged survival rate in GBM8401-xenografted mice. Treatment with Antrodia camphorata/CoQ0 inhibited HIF-1α and EMT/metastasis in glioblastoma.


Assuntos
Glioblastoma , beta Catenina , Humanos , Animais , Camundongos , beta Catenina/metabolismo , Ubiquinona/farmacologia , Vimentina/metabolismo , Transição Epitelial-Mesenquimal , Glioblastoma/tratamento farmacológico , Invasividade Neoplásica/patologia , Caderinas/genética , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia , Movimento Celular
6.
Arch Toxicol ; 97(4): 1047-1068, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36847822

RESUMO

Coenzyme Q0 (CoQ0) is a derivative quinone from Antrodia camphorata (AC) that exerts anticancer activities. This study examined the anticancer attributes of CoQ0 (0-4 µM) on inhibited anti-EMT/metastasis and NLRP3 inflammasome, and altered Warburg effects via HIF-1α inhibition in triple-negative breast cancer (MDA-MB-231 and 468) cells. MTT assay, cell migration/invasion assays, Western blotting, immunofluorescence, metabolic reprogramming, and LC-ESI-MS were carried out to assess the therapy potential of CoQ0. CoQ0 inhibited HIF-1α expression and suppressed the NLRP3 inflammasome and ASC/caspase-1 expression, followed by downregulation of IL-1ß and IL-18 expression in MDA-MB-231 and 468 cells. CoQ0 ameliorated cancer stem-like markers by decreasing CD44 and increasing CD24 expression. Notably, CoQ0 modulated EMT by upregulating the epithelial marker E-cadherin and downregulating the mesenchymal marker N-cadherin. CoQ0 inhibited glucose uptake and lactate accumulation. CoQ0 also inhibited HIF-1α downstream genes involved in glycolysis, such as HK-2, LDH-A, PDK-1, and PKM-2 enzymes. CoQ0 decreased extracellular acidification rate (ECAR), glycolysis, glycolytic capacity, and glycolytic reserve in MDA-MB-231 and 468 cells under normoxic and hypoxic (CoCl2) conditions. CoQ0 inhibited the glycolytic intermediates lactate, FBP, and 2/3-PG, and PEP levels. CoQ0 increased oxygen consumption rate (OCR), basal respiration, ATP production, maximal respiration, and spare capacity under normoxic and hypoxic (CoCl2) conditions. CoQ0 increased TCA cycle metabolites, such as citrate, isocitrate, and succinate. CoQ0 inhibited aerobic glycolysis and enhanced mitochondrial oxidative phosphorylation in TNBC cells. Under hypoxic conditions, CoQ0 also mitigated HIF-1α, GLUT1, glycolytic-related (HK-2, LDH-A, and PFK-1), and metastasis-related (E-cadherin, N-cadherin, and MMP-9) protein or mRNA expression in MDA-MB-231 and/or 468 cells. Under LPS/ATP stimulation, CoQ0 inhibited NLRP3 inflammasome/procaspase-1/IL-18 activation and NFκB/iNOS expression. CoQ0 also hindered LPS/ATP-stimulated tumor migration and downregulated LPS/ATP-stimulated N-cadherin and MMP-2/-9 expression. The present study revealed that suppression of HIF-1α expression caused by CoQ0 may contribute to inhibition of NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects of triple-negative breast cancers.


Assuntos
Neoplasias de Mama Triplo Negativas , Ubiquinona , Humanos , Trifosfato de Adenosina , Caderinas/genética , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamassomos , Inflamação , Interleucina-18 , Lactato Desidrogenase 5 , Lactatos , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ubiquinona/farmacologia
7.
Food Chem Toxicol ; 172: 113564, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563924

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a relatively common malignancy, characterized by lethal morbidity. Herein, we attempted to investigate the autophagy/apoptosis activities of the submerged fermented broths of Antrodia salmonea (AS) in HNSCC Twist-overexpressing (OECM-1 and FaDu-Twist) cells. AS (0-150 µg/mL) effectively reduced cell viability, colony formation, and downregulated Twist expression in OECM-1 and FaDu-Twist cells compared to FaDu cells. AS- induced apoptosis was mainly associated with activation of caspase-3, PARP cleavage, increased expression of VDAC-1 and disproportionation of Bax/Bcl-2. Annexin V/PI staining suggested late apoptosis induction by AS treatment. AS exhibits enhanced autophagy process mediated via LC3-I/II accumulation, increased acidic vesicular organelles (AVOs) formation and p62/SQSTM1 expression feeding into the apoptotic program. However, pre-treatment with autophagy blockers 3-MA and CQ significantly diminished AS-induced cell death. Additionally, suppression of AS-induced ROS release by treatment with antioxidant N-acetylcysteine (NAC) resulted in reduction of apoptotic and autophagic cell death. In vivo studies strengthened the above observations and showed that AS effectively reduced the tumor volume and tumor weight in OECM-1-xenografted nude mice. This study discovered that Antrodia salmonea exhibits a novel anti-cancer mechanism which could be harnessed as a new potent drug for HNSCC treatment.


Assuntos
Apoptose , Neoplasias de Cabeça e Pescoço , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Autofagia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
8.
Cell Signal ; 100: 110488, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208706

RESUMO

Osteoporosis is a silent disease of skeletal morphology that induces fragility and fracture risk in aged persons irrespective of gender. Juvenile secondary osteoporosis is rare and is influenced by familial genetic abnormalities. Despite the currently available therapeutic options, more-acute treatments are in need. Women suffer from osteoporosis after menopause, which is characterized by a decline in the secretion of sex hormones in the later phase of life. Several studies in the past two decades emphasized hormone-related pathways to combat osteoporosis. Some studies partially examined energy-related pathways, but achieving a more vivid picture of metabolism and bone remodeling in terms of the Warburg phenomenon is still warranted. Each cell requires sufficient energy for cellular propagation and growth; in particular, osteoporosis is an energy-dependent mechanism affected by a decreased cellular mass of the bone morphology. Energy utilization is the actual propagation of such diseases, and narrowing down these criteria will hopefully provide clues to formulate better therapeutic strategies. Oxidative glycolysis is a particular type of energy metabolic pathway in cancer cells that influences cellular proliferation. Therefore, the prospect of utilizing collective glucose metabolism by inducing the Warburg effect may improve cell propagation. The benefits of utilizing the energy from the Warburg effect may be a difficult task. However, it seems to improve their effectiveness in the osteoblast phenotype by connecting the selected pathways such as WNT, Notch, AKT, and Insulin signaling by targeting osteocalcin resulting in phenotypic alteration. Osteocalcin directs ATP utilization through the sclerostin SOST gene in the bone microenvironment. Thus, selective activation of ATP production involved in osteoblast maturation remains a prime strategy to fight osteoporosis.

9.
J Cancer ; 13(4): 1299-1306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281865

RESUMO

Background: Globally, gastric cancer is ranked 4th and 3rd in terms of incidence and mortality rate among all cancer types. This study aimed to examine the relationship between G protein-coupled receptor kinase 3 (GRK3) and gastric cancer prognosis and investigate the role of GRK3 in gastric cancer carcinogenesis. Methods: GRK3 level in gastric tissues and cells were determined using immunohistochemistry and immunoblotting. Kaplan-Meier analysis with the log-rank test was employed to evaluate the relationship between GRK3 expression and gastric cancer prognosis. RNAi technology was applied to examine the effects of GRK3 inhibition on gastric cancer proliferation and spread. Results: GRK3 overexpression was correlated significantly with lymphatic metastasis (P = 0.0011), distant metastasis (P < 0.0001), TNM stage (P = 0.0035), and vascular invasion (P = 0.0025). Kaplan-Meier survival analysis showed that the disease-free survival and overall survival of patients with high GRK3 expression were significantly shorter than those of patients with low GRK3 expression. Multivariate Cox regression analysis also showed that the overexpression of GRK3 was an independent prognostic biomarker of gastric cancer (P = 0.029). In cultured gastric cancer cells, GRK3 knockdown inhibited cell proliferation, migration, and invasion. Further analysis revealed that more GRK3-knockdown cells were in G0/G1 phase and few cells were in S phase, thereby inhibiting cell proliferation. Conclusions: GRK3 overexpression can be a candidate biomarker for gastric cancer prognosis. GRK3 is also a potential therapeutic target for gastric cancer.

10.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163281

RESUMO

Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.


Assuntos
Isoflavonas/farmacologia , Melaninas/metabolismo , Animais , Astragalus propinquus/metabolismo , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Isoflavonas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo , alfa-MSH/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Oxid Med Cell Longev ; 2022: 4266214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035661

RESUMO

Coenzyme Q (CoQ) analogs with a variable number of isoprenoid units have exhibited as anti-inflammatory as well as antioxidant molecules. Using novel quinone derivative CoQ0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, zero side chain isoprenoid), we studied its molecular activities against LPS/ATP-induced inflammation and redox imbalance in murine RAW264.7 macrophages. CoQ0's non- or subcytotoxic concentration suppressed the NLRP3 inflammasome and procaspase-1 activation, followed by downregulation of IL1ß expression in LPS/ATP-stimulated RAW264.7 macrophages. Similarly, treatment of CoQ0 led to LC3-I/II accumulation and p62/SQSTM1 activation. An increase in the Beclin-1/Bcl-2 ratio and a decrease in the expression of phosphorylated PI3K/AKT, p70 S6 kinase, and mTOR showed that autophagy was activated. Besides, CoQ0 increased Parkin protein to recruit damaged mitochondria and induced mitophagy in LPS/ATP-stimulated RAW264.7 macrophages. CoQ0 inhibited LPS/ATP-stimulated ROS generation in RAW264.7 macrophages. Notably, when LPS/ATP-stimulated RAW264.7 macrophages were treated with CoQ0, Mito-TEMPO (a mitochondrial ROS inhibitor), or N-acetylcysteine (NAC, a ROS inhibitor), there was a significant reduction of LPS/ATP-stimulated NLRP3 inflammasome activation and IL1ß expression. Interestingly, treatment with CoQ0 or Mito-TEMPO, but not NAC, significantly increased LPS/ATP-induced LC3-II accumulation indicating that mitophagy plays a key role in the regulation of CoQ0-inhibited NLRP3 inflammasome activation. Nrf2 knockdown significantly decreased IL1ß expression in LPS/ATP-stimulated RAW264.7 macrophages suggesting that CoQ0 inhibited ROS-mediated NLRP3 inflammasome activation and IL1ß expression was suppressed due to the Nrf2 activation. Hence, this study showed that CoQ0 might be a promising candidate for the therapeutics of inflammatory disorders due to its effective anti-inflammatory as well as antioxidant properties.


Assuntos
Trifosfato de Adenosina/metabolismo , Inflamassomos/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Mitofagia/imunologia , Ubiquinona/uso terapêutico , Animais , Humanos , Camundongos , Transfecção , Ubiquinona/farmacologia
12.
J Agric Food Chem ; 69(48): 14557-14567, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813306

RESUMO

Triple negative breast cancer (TNBC) is one of the leading causes of cancer death in the world and lacks an effective targeted therapy. G-protein-coupled receptor 161 (GPR161) has been demonstrated to perform the functional regulations on TNBC progression and might be a potential new target for TNBC therapy. This study showed the effects of bisdemethoxycurcumin (BDMC) on GPR161 regulation, indicating that BDMC effectively inhibited GPR161 expression and downregulated GPR161-driven signaling. BDMC showed the potent inhibitory effects on TNBC proliferation through suppressing GPR161-mediated mammalian target of rapamycin (mTOR)/70 kDa ribosomal protein S6 kinase (p70S6K) activation. Besides, in this study, we discover the mechanism of GPR161-driven TNBC metastasis, linking to GPR161-mediated twist-related protein 1 (Twist1)/matrix metallopeptidase 9 (MMP9) contributing to the epithelial-mesenchymal transition (EMT). BDMC effectively repressed GPR161-mediated TNBC metastasis via inhibiting Twist1/MMP9-induced EMT. The three-dimensional invasion assay also showed that BDMC significantly inhibited TNBC invasion. The combination treatment of BDMC and rapamycin enhanced the inhibition of TNBC proliferation and metastasis through increasing the blockage of mTOR activation. Furthermore, this study also observed that BDMC activated the caspase 3/9 signaling pathway to induce TNBC apoptosis. Therefore, BDMC could be applicable to anticancer therapy, especially targeting on the GPR161-driven cancer type.


Assuntos
Neoplasias de Mama Triplo Negativas , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Diarileptanoides , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
13.
Food Chem Toxicol ; 155: 112384, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229024

RESUMO

Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone) derived from Antrodia camphorata exerts anticancer activities against breast, melanoma, and ovarian carcinoma. Glioblastoma multiforme is a common tumor affecting the central nervous system. This study explored anticancer properties of CoQ0 on human glioblastoma both in vitro and in vivo, and explained the molecular mechanism behind it. CoQ0 treatment retarded the growth and suppressed colony formation in glioblastoma (U87MG and GBM8401) cells. CoQ0 induced apoptosis by activation of caspase-3, cleavage of PARP, and dysregulation of Bax and Bcl-2 in both cell lines. Annexin V/PI staining indicated CoQ0 mediated necrosis and apoptosis. Interestingly, AVOs were increased trough induction of autophagy by CoQ0, LC3-II accumulation, and p62/SQSTM1 expression, leading to death mechanism. Z-VAD-FMK has no effect on CoQ0-induced autophagy but autophagy inhibition by 3-methyladenine (3-MA)/chloroquine (CQ) led to CoQ0-induced apoptosis. N-acetylcysteine (NAC) inhibited CoQ0-mediated ROS production and diminished CoQ0-induced apoptotic and autophagic cell death. Further, CoQ0 inhibited PI3K/AKT/mTOR signaling pathways. CoQ0 reduced the tumor burden in U87MG and GBM8401 xenografted athymic nude mice and significantly modulated tumor xenograft by inducing apoptosis and autophagy. CoQ0 generated ROS-mediated apoptotic and autophagic cell death for effective glioblastoma treatment.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzoquinonas/uso terapêutico , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glioblastoma/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Necrose/induzido quimicamente , Polyporales/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Am J Cancer Res ; 11(6): 2717-2735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249424

RESUMO

Gastric cancer (GC) is one of the most common malignant tumors worldwide and has high rates of morbidity and mortality. This study investigated the role of Krüppel-like factor 16 (KLF16) in GC. Real-time polymerase chain reaction, Western blotting, and immunohistochemistry were used to examine the expression of KLF16 in gastric cells and tissues. Gene overexpression and silencing were applied to study the involvement of KLF16 in GC cell growth and metastasis along with its underlying mechanism. The results indicate that KLF16 overexpression is significantly associated with nodal status, distant metastasis, staging, degree of differentiation, vascular invasion, and patient survival. Multivariate Cox proportional hazards regression model analysis revealed that the overexpression of KLF16 is an independent prognostic biomarker of GC. The in vitro study revealed that up-regulated KLF16 accelerates cell growth and metastasis, whereas the inhibition of KLF16 suppresses these cellular activities. The results of an animal study also indicated that the overexpression and silencing of KLF16 accelerate and repress xenograft proliferation and metastasis. Further studies of affected cell growth and metastasis revealed that KLF16 modulates the cell cycle and epithelial-mesenchymal transition through transcriptional regulation of microfibrillar-associated protein 5. Collectively, these results reveal that KLF16 overexpression is a potential prognostic biomarker and therapeutic target for the treatment of GC.

15.
Free Radic Biol Med ; 173: 151-169, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314818

RESUMO

3-O-ethyl ascorbic acid (EAA) is an ether-derivative of ascorbic acid, known to inhibit tyrosinase activity, and is widely used in skincare formulations. Nevertheless, the molecular mechanisms underlying the EAA's effects are poorly understood. Here, the anti-melanogenic activity of EAA was demonstrated through Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes (HaCaT) and autophagy induction and inhibition of α-MSH-stimulated melanogenesis in melanocytes (B16F10). EAA pretreatment increased the HaCaT cell viability but suppressed ROS-mediated p53/POMC/α-MSH pathways in UVA-irradiated cells. Further, the conditioned medium from EAA-pretreated and UVA-irradiated HaCaT cells suppressed the MITF-CREB-tyrosinase pathways leading to the inhibition of melanin synthesis in B16F10 cells. EAA treatment increased nuclear Nrf2 translocation via the p38, PKC, and ROS pathways leading to HO-1, γ-GCLC, and NQO-1 antioxidant expression in HaCaT cells. However, Nrf2 silencing reduced the EAA-mediated anti-melanogenic activity, evidenced by impaired antioxidant gene expression and uncontrolled ROS (H202) generation following UVA irradiation. In B16F10 cells, EAA-induced autophagy was shown by enhanced LC3-II levels, AVO formation, Beclin-1 upregulation, and activation of p62/SQSTM1. Further, EAA-induced anti-melanogenic activity was substantially decreased in autophagy inhibitor (3-MA) pretreated or LC3 knockdown B16F10 cells. Notably, transmission electron microscopy data showed increased melanosome-engulfing autophagosomes in EAA-treated B16F10 cells. Moreover, EAA also down-regulated MC1R, TRP-1/-2, tyrosinase expressions, and melanin synthesis by suppressing the cAMP-CREB-mediated MITF expression in B16F10 cells stimulated with α-MSH. In vivo studies on the zebrafish model further confirmed that EAA inhibited tyrosinase expression/activity and endogenous pigmentation. In conclusion, 3-O-ethyl ascorbic acid is an effective skin-whitening agent and could be used as a topical agent for cosmetic purposes.


Assuntos
Melaninas , Melanoma Experimental , Animais , Ácido Ascórbico , Autofagia , Linhagem Celular Tumoral , Queratinócitos , Melanócitos , Melanoma Experimental/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Peixe-Zebra , alfa-MSH
16.
Redox Biol ; 44: 102007, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34049220

RESUMO

Pterostilbene (Pt) is a natural polyphenol found in blueberries and several grape varieties. Pt's pharmacological importance was well documented. Nevertheless, the depigmenting effects are not demonstrated. We evaluated the Pt's depigmenting effects through autophagy induction in B16F10 cells and inhibition of UVA (3 J/cm2)-irradiated α-MSH in keratinocyte HaCaT cells via Nrf2-mediated antioxidant pathways. Pt (2.5-5µM) attenuated ROS production and downregulated the POMC/α-MSH pathway in HaCaT cells. The conditioned medium-derived from UVA-irradiated HaCaT pretreated with Pt suppressed melanogenesis in B16F10 through MITF-CREB-tyrosinase pathway downregulation. Interestingly, Pt-induced HaCaT autophagy was revealed by enhanced LC3-II accumulation, p62/SQSTM1 activation, and AVO formation. Pt significantly decreased melanosome gp100 but increased LC3-II levels in HaCaT cells exposed to B16F10-derived melanin. Pt activated and facilitated the Nrf2 antioxidant pathway in HaCaT cells leading to increased HO-1, γ-GCLC, and NQO-1 antioxidant protein expression. ERK, AMPK, and ROS pathways mediate the Nrf2 activation. However, Nrf2 knockdown suppressed Pt's antioxidant ability leading to uncontrolled ROS and α-MSH levels after UVA-irradiation suggested the essentiality of the Nrf2 pathway. Moreover, in α-MSH-stimulated B16F10 cells, Pt (10-30 µM) downregulated the MC1R, MITF, tyrosinase, TRP-1/-2, and melanin expression. Further, Pt showed potent anti-melanogenic effects through autophagy induction mechanism in B16F10 cells, verified by increased LC3-II/p62 levels, AVO formation, and Beclin-1/Bcl-2 ratio, decreased ATG4B levels and PI3K/AKT/mTOR pathway. Transmission electron microscopy provided direct evidence by showing autophagosomes engulfing melanosomes following Pt treatment in α-MSH-stimulated B16F10 cells. Moreover, Pt-induced anti-melanogenic activity through the downregulation of CREB-MITF pathway-mediated TRP-1/-2, tyrosinase expressions, melanosome formation, and melanin synthesis was substantially reversed due to 3-MA (autophagy inhibitor) pretreatment or LC3 silencing in B16F10 cells. In vivo results also confirmed that Pt-inhibited tyrosinase expression/activity and endogenous pigmentation in the zebrafish model. Therefore, pterostilbene is a potent skin-whitening and antioxidant agent and could be used in skin-whitening formulations as a topical applicant.


Assuntos
Fator 2 Relacionado a NF-E2 , alfa-MSH , Animais , Antioxidantes , Autofagia , Linhagem Celular Tumoral , Queratinócitos , Melaninas , Melanócitos , Fosfatidilinositol 3-Quinases , Estilbenos , Peixe-Zebra
17.
Aging (Albany NY) ; 13(12): 15964-15989, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031264

RESUMO

A traditional Chinese medicinal fungus, Antrodia salmonea (AS), with antioxidant properties is familiar in Taiwan but anti-cancer activity of AS in human colon cancer is ambiguous. Hence, we explored the anti-cancer activity of AS in colon cancer cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that AS showed a remarkable effect on cell viability in colon cancer cells; SW620, HCT116, and HT29. Annexin V/propidium iodide (PI) stained cells indicated that AS induced both early/late apoptosis in SW620 cells. Additionally, cells treated with AS induced caspase-3 activation, poly (ADP-ribose) polymerase (PARP) cleavage, mitochondrial dysfunction, and Bcl-2 associated X (Bax)/B-cell lymphoma (Bcl-2) dysregulation. Microtubule- associated protein 1A/1B-light chain 3B (LC3-II) accumulation, sequestosome 1 (p62/SQSTM1) activation, autophagy related 4B cysteine peptidase (ATG4B) inactivation, acidic vesicular organelles (AVOs) formation, and Beclin-1/Bcl-2 dysregulation revealed that AS-induced autophagy. Interestingly, cells pretreated with 3-methyladenine (3-MA) strengthened AS-induced caspase-3/apoptosis. Suppression of apoptosis by z-Val-Ala-Asp fluoromethyl ketone (Z-VAD-FMK) did not however block AS-induced autophagy, suggesting that autophagy was not attenuated by the AS-induced apoptosis. Application of N-acetylcysteine (NAC) prevented AS-induced cell death, caspase-3 activation, LC3-II accumulation, and AVOs formation, indicating that AS-induced apoptosis and autophagy was mediated by reactive oxygen species (ROS). Furthermore, AS-induced cytoprotective autophagy and apoptosis through extracellular signal-regulated kinase (ERK) signaling cascades. Moreover, in vivo data disclosed that AS inhibited colitis-associated tumorigenesis in azoxymethane (AOM)-dextran sodium sulphate (DSS)-treated mice. For the first time, we report the anti-cancer properties of this potentially advantageous mushroom for the treatment of human colon cancer.


Assuntos
Apoptose , Autofagia , Neoplasias do Colo/patologia , Citoproteção , Polyporales/química , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Azoximetano , Proteína Beclina-1/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Colite/induzido quimicamente , Colite/complicações , Neoplasias do Colo/etiologia , Citoproteção/efeitos dos fármacos , Sulfato de Dextrana , Progressão da Doença , Humanos , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Biochem Pharmacol ; 185: 114454, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545118

RESUMO

Ellagic acid (EA) is a natural phenol antioxidant in different fruits, vegetables, and nuts. As a copper iron chelator from the tyrosinase enzyme's active site, EA was reported to inhibit melanogenesis in melanocytes. Here, we demonstrated the anti-melanogenic mechanisms of EA through autophagy induction in melanoma B16F10 cells and the role of Nrf2 and UVA (3 J/cm2)-activated α-melanocyte stimulating hormone (α-MSH) pathways in keratinocyte HaCaT cells. In vitro data showed that EA suppressed the tyrosinase activity and melanogenesis by suppressing cAMP-mediated CREB and MITF signaling mechanisms in α-MSH-stimulated B16F10 cells. ERK, JNK, and AKT pathways were involved in this EA-regulated MITF downregulation. Notably, EA induced autophagy in B16F10 cells was evidenced from increased LC3-II accumulation, p62/SQSTM1 activation, ATG4B downregulation, acidic vesicular organelle (AVO) formation, PI3K/AKT/mTOR inhibition, and Beclin-1/Bcl-2 dysregulation. Interestingly, 3-MA (an autophagy inhibitor) pretreatment or LC3 silencing (siRNA transfection) of B16F10 cells significantly reduced EA-induced anti-melanogenic activity. Besides this, in UVA-irradiated keratinocyte HaCaT cells, EA suppressed ROS production and α-MSH generation. Moreover, EA mediated the activation and nuclear translocation of Nrf2, leading to antioxidant γ-GCLC, HO-1, and NQO-1 protein expression in HaCaT cells. However, Nrf2 knockdown has significantly impaired this effect, and there was an uncontrolled ROS generation following UVA irradiation. JNK, PKC, and ROS pathways were involved in the activation of Nrf2 in HaCaT cells. In vivo experiments using the zebrafish model confirmed that EA inhibited tyrosinase activity and endogenous pigmentation. In conclusion, ellagic acid is an effective skin-whitening agent and might be used as a topical applicant.


Assuntos
Autofagia/efeitos dos fármacos , Ácido Elágico/farmacologia , Melanócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Raios Ultravioleta/efeitos adversos , Proteínas de Peixe-Zebra/antagonistas & inibidores , alfa-MSH/antagonistas & inibidores , Animais , Autofagia/fisiologia , Relação Dose-Resposta a Droga , Ácido Elágico/química , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Melaninas/antagonistas & inibidores , Melaninas/metabolismo , Melaninas/efeitos da radiação , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanoma Experimental , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/efeitos da radiação , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/efeitos da radiação , alfa-MSH/metabolismo , alfa-MSH/efeitos da radiação
20.
Cancers (Basel) ; 12(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053749

RESUMO

Melanoma is the most prevalent type of skin cancer with high mortality rates. This study demonstrates the in vitro and in vivo anticancer properties of chalcone flavokawain B (FKB) induced ROS-mediated apoptosis and autophagy in human melanoma (human epithelial melanoma cell line A375 and/or human skin lymph node derived melanoma cell line A2058) cells. Cell viability was calculated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the expression patterns of various apoptosis, autophagy-associated proteins were determined by Western blot methods. Annexin V was detected by flow cytometry, whereas acidic vesicular organelles (AVOs) and intracellular ROS levels were measured by fluorescence microscopy. The in vivo anticancer properties of FKB were evaluated by xenografting the A375 cells into nude mice. The results convey that FKB inhibited cell viability, B-Raf proto-oncogene, serine/threonine kinase (BRAF)/extracellular signal-regulated kinase (ERK) expression in human melanoma cells. Caspase-3 activation, poly (ADP-ribose) polymerase (PARP) cleavage pathway, and Bcl2 associated X (Bax)/B-cell lymphoma 2 (Bcl-2) dysregulation were involved in the execution of apoptosis. Moreover, FKB-induced autophagy was observed through increased microtubule-associated protein 1A/1B-light chain 3B (LC3-II) accumulation and AVOs formation, which was also associated with an increase in sequestosome 1 (SQSTM1/p62), decreased protein kinase B (AKT)/mammalian target of rapamycin (mTOR) expressions, and dysregulated Beclin-1/Bcl-2 levels. Autophagy inhibitors [3-methyladenine (3-MA)/chloroquine (CQ)] and LC3 silencing suppressed FKB-induced apoptosis by decreasing caspase-3 in melanoma cells. The antioxidant N-acetylcysteine (NAC) diminished FKB-induced apoptotic and autophagic cell death. However, the inhibition of apoptosis decreased FKB-induced autophagy (LC3-I/II). The in vivo study confirmed that FKB inhibited melanoma growth in A375-xenografted nude mice. This study concluded that FKB is critically associated with the execution and generation of ROS-modulated apoptotic and autophagic cell death of melanoma cells. FKB also repressed tumor growth in xenografted nude mice. Therefore, flavokawain B might be a potential anti-tumor agent in human melanoma treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA